ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzf GIF version

Theorem uzf 8622
Description: The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3079 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
2 zex 8360 . . . . 5 ℤ ∈ V
32elpw2 3932 . . . 4 ({𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ)
41, 3mpbir 144 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
54rgenw 2418 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
6 df-uz 8620 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
76fmpt 5340 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
85, 7mpbi 143 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff set class
Syntax hints:  wcel 1433  wral 2348  {crab 2352  wss 2973  𝒫 cpw 3382   class class class wbr 3785  wf 4918  cle 7154  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-neg 7282  df-z 8352  df-uz 8620
This theorem is referenced by:  eluzel2  8624  uzn0  8634  uzin2  9873  rexanuz  9874  climmpt  10139
  Copyright terms: Public domain W3C validator