ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi GIF version

Theorem unsnfi 6384
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)

Proof of Theorem unsnfi
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6264 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 118 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 959 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 peano2 4336 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
54ad2antrl 473 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
6 simprr 498 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
7 simpl2 942 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
8 simprl 497 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
9 en2sn 6313 . . . . . . 7 ((𝐵𝑉𝑛 ∈ ω) → {𝐵} ≈ {𝑛})
107, 8, 9syl2anc 403 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → {𝐵} ≈ {𝑛})
11 disjsn 3454 . . . . . . . . 9 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
1211biimpri 131 . . . . . . . 8 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
13123ad2ant3 961 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∩ {𝐵}) = ∅)
1413adantr 270 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∩ {𝐵}) = ∅)
15 nnord 4352 . . . . . . . . 9 (𝑛 ∈ ω → Ord 𝑛)
16 ordirr 4285 . . . . . . . . 9 (Ord 𝑛 → ¬ 𝑛𝑛)
1715, 16syl 14 . . . . . . . 8 (𝑛 ∈ ω → ¬ 𝑛𝑛)
18 disjsn 3454 . . . . . . . 8 ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛𝑛)
1917, 18sylibr 132 . . . . . . 7 (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅)
2019ad2antrl 473 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ∩ {𝑛}) = ∅)
21 unen 6316 . . . . . 6 (((𝐴𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
226, 10, 14, 20, 21syl22anc 1170 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
23 df-suc 4126 . . . . 5 suc 𝑛 = (𝑛 ∪ {𝑛})
2422, 23syl6breqr 3825 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
25 breq2 3789 . . . . 5 (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛))
2625rspcev 2701 . . . 4 ((suc 𝑛 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
275, 24, 26syl2anc 403 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
28 isfi 6264 . . 3 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
2927, 28sylibr 132 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin)
303, 29rexlimddv 2481 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wrex 2349  cun 2971  cin 2972  c0 3251  {csn 3398   class class class wbr 3785  Ord word 4117  suc csuc 4120  ωcom 4331  cen 6242  Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-1o 6024  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by:  fnfi  6388
  Copyright terms: Public domain W3C validator