ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er GIF version

Theorem enq0er 6625
Description: The equivalence relation for non-negative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er ~Q0 Er (ω × N)

Proof of Theorem enq0er
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 6614 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))}
21relopabi 4481 . . . 4 Rel ~Q0
32a1i 9 . . 3 (⊤ → Rel ~Q0 )
4 enq0sym 6622 . . . 4 (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
54adantl 271 . . 3 ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓)
6 enq0tr 6624 . . . 4 ((𝑓 ~Q0 𝑔𝑔 ~Q0 ) → 𝑓 ~Q0 )
76adantl 271 . . 3 ((⊤ ∧ (𝑓 ~Q0 𝑔𝑔 ~Q0 )) → 𝑓 ~Q0 )
8 enq0ref 6623 . . . 4 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
98a1i 9 . . 3 (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓))
103, 5, 7, 9iserd 6155 . 2 (⊤ → ~Q0 Er (ω × N))
1110trud 1293 1 ~Q0 Er (ω × N)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wtru 1285  wex 1421  wcel 1433  cop 3401   class class class wbr 3785  ωcom 4331   × cxp 4361  Rel wrel 4368  (class class class)co 5532   ·𝑜 comu 6022   Er wer 6126  Ncnpi 6462   ~Q0 ceq0 6476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ni 6494  df-enq0 6614
This theorem is referenced by:  enq0eceq  6627  nqnq0pi  6628  mulcanenq0ec  6635  nnnq0lem1  6636  addnq0mo  6637  mulnq0mo  6638
  Copyright terms: Public domain W3C validator