ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqeceq GIF version

Theorem enqeceq 6549
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
Assertion
Ref Expression
enqeceq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))

Proof of Theorem enqeceq
StepHypRef Expression
1 enqer 6548 . . . 4 ~Q Er (N × N)
21a1i 9 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ~Q Er (N × N))
3 opelxpi 4394 . . . 4 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
43adantr 270 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
52, 4erth 6173 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ))
6 enqbreq 6546 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
75, 6bitr3d 188 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785   × cxp 4361  (class class class)co 5532   Er wer 6126  [cec 6127  Ncnpi 6462   ·N cmi 6464   ~Q ceq 6469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-ni 6494  df-mi 6496  df-enq 6537
This theorem is referenced by:  ordpipqqs  6564  nqtri3or  6586
  Copyright terms: Public domain W3C validator