ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrn GIF version

Theorem fnasrn 5362
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1 𝐵 ∈ V
Assertion
Ref Expression
fnasrn (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)

Proof of Theorem fnasrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3 𝐵 ∈ V
21dfmpt 5361 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
3 eqid 2081 . . . . 5 (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
43rnmpt 4600 . . . 4 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
5 velsn 3415 . . . . . 6 (𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ 𝑦 = ⟨𝑥, 𝐵⟩)
65rexbii 2373 . . . . 5 (∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩)
76abbii 2194 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
84, 7eqtr4i 2104 . . 3 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
9 df-iun 3680 . . 3 𝑥𝐴 {⟨𝑥, 𝐵⟩} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
108, 9eqtr4i 2104 . 2 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
112, 10eqtr4i 2104 1 (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  {cab 2067  wrex 2349  Vcvv 2601  {csn 3398  cop 3401   ciun 3678  cmpt 3839  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by:  idref  5417
  Copyright terms: Public domain W3C validator