ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr GIF version

Theorem frectfr 6008
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 5972 or tfri2d 5973, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frectfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Distinct variable groups:   𝑔,𝑚,𝑥,𝑦,𝐴   𝑧,𝑔,𝐹,𝑚,𝑥,𝑦   𝑔,𝑉,𝑚,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐺(𝑥,𝑦,𝑧,𝑔,𝑚)   𝑉(𝑥,𝑧)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2604 . . . . . . . 8 𝑔 ∈ V
21a1i 9 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝑔 ∈ V)
3 simpl 107 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑧(𝐹𝑧) ∈ V)
4 simpr 108 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐴𝑉)
52, 3, 4frecabex 6007 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
65ralrimivw 2435 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
7 frectfr.1 . . . . . 6 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87fnmpt 5045 . . . . 5 (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V → 𝐺 Fn V)
96, 8syl 14 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐺 Fn V)
10 vex 2604 . . . 4 𝑦 ∈ V
11 funfvex 5212 . . . . 5 ((Fun 𝐺𝑦 ∈ dom 𝐺) → (𝐺𝑦) ∈ V)
1211funfni 5019 . . . 4 ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺𝑦) ∈ V)
139, 10, 12sylancl 404 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (𝐺𝑦) ∈ V)
147funmpt2 4959 . . 3 Fun 𝐺
1513, 14jctil 305 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
1615alrimiv 1795 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  c0 3251  cmpt 3839  suc csuc 4120  ωcom 4331  dom cdm 4363  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by:  frecfnom  6009  frecsuclem1  6010  frecsuclemdm  6011  frecsuclem3  6013
  Copyright terms: Public domain W3C validator