![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecsuclemdm | GIF version |
Description: Lemma for frecsuc 6014. (Contributed by Jim Kingdon, 15-Aug-2019.) |
Ref | Expression |
---|---|
frecsuclem1.h | ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
Ref | Expression |
---|---|
frecsuclemdm | ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4350 | . . . . 5 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
2 | suceloni 4245 | . . . . 5 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
3 | onss 4237 | . . . . 5 ⊢ (suc 𝐵 ∈ On → suc 𝐵 ⊆ On) | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 ⊢ (𝐵 ∈ ω → suc 𝐵 ⊆ On) |
5 | 4 | 3ad2ant3 961 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ω) → suc 𝐵 ⊆ On) |
6 | eqid 2081 | . . . . . . 7 ⊢ recs(𝐺) = recs(𝐺) | |
7 | frecsuclem1.h | . . . . . . . 8 ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | |
8 | 7 | frectfr 6008 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
9 | 6, 8 | tfri1d 5972 | . . . . . 6 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → recs(𝐺) Fn On) |
10 | fndm 5018 | . . . . . 6 ⊢ (recs(𝐺) Fn On → dom recs(𝐺) = On) | |
11 | 9, 10 | syl 14 | . . . . 5 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → dom recs(𝐺) = On) |
12 | 11 | sseq2d 3027 | . . . 4 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (suc 𝐵 ⊆ dom recs(𝐺) ↔ suc 𝐵 ⊆ On)) |
13 | 12 | 3adant3 958 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ω) → (suc 𝐵 ⊆ dom recs(𝐺) ↔ suc 𝐵 ⊆ On)) |
14 | 5, 13 | mpbird 165 | . 2 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ω) → suc 𝐵 ⊆ dom recs(𝐺)) |
15 | ssdmres 4651 | . 2 ⊢ (suc 𝐵 ⊆ dom recs(𝐺) ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵) | |
16 | 14, 15 | sylib 120 | 1 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∧ w3a 919 ∀wal 1282 = wceq 1284 ∈ wcel 1433 {cab 2067 ∃wrex 2349 Vcvv 2601 ⊆ wss 2973 ∅c0 3251 ↦ cmpt 3839 Oncon0 4118 suc csuc 4120 ωcom 4331 dom cdm 4363 ↾ cres 4365 Fn wfn 4917 ‘cfv 4922 recscrecs 5942 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 |
This theorem is referenced by: frecsuclem3 6013 |
Copyright terms: Public domain | W3C validator |