ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 GIF version

Theorem fzsuc2 9096
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 8652 . 2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))))
2 zcn 8356 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 ax-1cn 7069 . . . . . . . 8 1 ∈ ℂ
4 npcan 7317 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
52, 3, 4sylancl 404 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
65oveq2d 5548 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀))
7 uncom 3116 . . . . . . . 8 (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅)
8 un0 3278 . . . . . . . 8 ({𝑀} ∪ ∅) = {𝑀}
97, 8eqtri 2101 . . . . . . 7 (∅ ∪ {𝑀}) = {𝑀}
10 zre 8355 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110ltm1d 8010 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀)
12 peano2zm 8389 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
13 fzn 9061 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1412, 13mpdan 412 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1511, 14mpbid 145 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅)
165sneqd 3411 . . . . . . . 8 (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀})
1715, 16uneq12d 3127 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀}))
18 fzsn 9084 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
199, 17, 183eqtr4a 2139 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀))
206, 19eqtr4d 2116 . . . . 5 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
21 oveq1 5539 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
2221oveq2d 5548 . . . . . 6 (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1)))
23 oveq2 5540 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1)))
2421sneqd 3411 . . . . . . 7 (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)})
2523, 24uneq12d 3127 . . . . . 6 (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
2622, 25eqeq12d 2095 . . . . 5 (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})))
2720, 26syl5ibrcom 155 . . . 4 (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})))
2827imp 122 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
295fveq2d 5202 . . . . . 6 (𝑀 ∈ ℤ → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
3029eleq2d 2148 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝑀)))
3130biimpa 290 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ𝑀))
32 fzsuc 9086 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3331, 32syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3428, 33jaodan 743 . 2 ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
351, 34sylan2 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  cun 2971  c0 3251  {csn 3398   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  1c1 6982   + caddc 6984   < clt 7153  cmin 7279  cz 8351  cuz 8619  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fseq1p1m1  9111  frecfzennn  9419
  Copyright terms: Public domain W3C validator