Proof of Theorem fseq1p1m1
| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 944 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹:(1...𝑁)⟶𝐴) |
| 2 | | nn0p1nn 8327 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 3 | 2 | adantr 270 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝑁 + 1) ∈ ℕ) |
| 4 | | simpr2 945 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐵 ∈ 𝐴) |
| 5 | | fseq1p1m1.1 |
. . . . . . . . 9
⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} |
| 6 | | fsng 5357 |
. . . . . . . . 9
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {〈(𝑁 + 1), 𝐵〉})) |
| 7 | 5, 6 | mpbiri 166 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
| 8 | 3, 4, 7 | syl2anc 403 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
| 9 | 4 | snssd 3530 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → {𝐵} ⊆ 𝐴) |
| 10 | 8, 9 | fssd 5075 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴) |
| 11 | | fzp1disj 9097 |
. . . . . . 7
⊢
((1...𝑁) ∩
{(𝑁 + 1)}) =
∅ |
| 12 | 11 | a1i 9 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
| 13 | | fun2 5084 |
. . . . . 6
⊢ (((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐻:{(𝑁 + 1)}⟶𝐴) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴) |
| 14 | 1, 10, 12, 13 | syl21anc 1168 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴) |
| 15 | | 1z 8377 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 16 | | simpl 107 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈
ℕ0) |
| 17 | | nn0uz 8653 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 18 | | 1m1e0 8108 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
| 19 | 18 | fveq2i 5201 |
. . . . . . . . . 10
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 20 | 17, 19 | eqtr4i 2104 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 21 | 16, 20 | syl6eleq 2171 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
| 22 | | fzsuc2 9096 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ 𝑁
∈ (ℤ≥‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
| 23 | 15, 21, 22 | sylancr 405 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
| 24 | 23 | eqcomd 2086 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1))) |
| 25 | 24 | feq2d 5055 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
| 26 | 14, 25 | mpbid 145 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴) |
| 27 | | simpr3 946 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺 = (𝐹 ∪ 𝐻)) |
| 28 | 27 | feq1d 5054 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
| 29 | 26, 28 | mpbird 165 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
| 30 | 27 | reseq1d 4629 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)})) |
| 31 | | ffn 5066 |
. . . . . . . . . 10
⊢ (𝐹:(1...𝑁)⟶𝐴 → 𝐹 Fn (1...𝑁)) |
| 32 | | fnresdisj 5029 |
. . . . . . . . . 10
⊢ (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
| 33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
| 34 | 12, 33 | mpbid 145 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅) |
| 35 | 34 | uneq1d 3125 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))) |
| 36 | | resundir 4644 |
. . . . . . 7
⊢ ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) |
| 37 | | uncom 3116 |
. . . . . . . 8
⊢ (∅
∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) |
| 38 | | un0 3278 |
. . . . . . . 8
⊢ ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)}) |
| 39 | 37, 38 | eqtr2i 2102 |
. . . . . . 7
⊢ (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) |
| 40 | 35, 36, 39 | 3eqtr4g 2138 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)})) |
| 41 | | ffn 5066 |
. . . . . . 7
⊢ (𝐻:{(𝑁 + 1)}⟶𝐴 → 𝐻 Fn {(𝑁 + 1)}) |
| 42 | | fnresdm 5028 |
. . . . . . 7
⊢ (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
| 43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
| 44 | 30, 40, 43 | 3eqtrd 2117 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻) |
| 45 | 44 | fveq1d 5200 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1))) |
| 46 | 16 | nn0zd 8467 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈ ℤ) |
| 47 | 46 | peano2zd 8472 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝑁 + 1) ∈ ℤ) |
| 48 | | snidg 3423 |
. . . . 5
⊢ ((𝑁 + 1) ∈ ℤ →
(𝑁 + 1) ∈ {(𝑁 + 1)}) |
| 49 | | fvres 5219 |
. . . . 5
⊢ ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
| 50 | 47, 48, 49 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
| 51 | 5 | fveq1i 5199 |
. . . . . 6
⊢ (𝐻‘(𝑁 + 1)) = ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) |
| 52 | | fvsng 5380 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) = 𝐵) |
| 53 | 51, 52 | syl5eq 2125 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵) |
| 54 | 3, 4, 53 | syl2anc 403 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵) |
| 55 | 45, 50, 54 | 3eqtr3d 2121 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
| 56 | 27 | reseq1d 4629 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹 ∪ 𝐻) ↾ (1...𝑁))) |
| 57 | | incom 3158 |
. . . . . . . 8
⊢ ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
| 58 | 57, 12 | syl5eq 2125 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅) |
| 59 | | ffn 5066 |
. . . . . . . 8
⊢ (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)}) |
| 60 | | fnresdisj 5029 |
. . . . . . . 8
⊢ (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
| 61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
| 62 | 58, 61 | mpbid 145 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅) |
| 63 | 62 | uneq2d 3126 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)) |
| 64 | | resundir 4644 |
. . . . 5
⊢ ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) |
| 65 | | un0 3278 |
. . . . . 6
⊢ ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁)) |
| 66 | 65 | eqcomi 2085 |
. . . . 5
⊢ (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅) |
| 67 | 63, 64, 66 | 3eqtr4g 2138 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁))) |
| 68 | | fnresdm 5028 |
. . . . 5
⊢ (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
| 69 | 1, 31, 68 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
| 70 | 56, 67, 69 | 3eqtrrd 2118 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
| 71 | 29, 55, 70 | 3jca 1118 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) |
| 72 | | simpr1 944 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
| 73 | | fzssp1 9085 |
. . . . 5
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
| 74 | | fssres 5086 |
. . . . 5
⊢ ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
| 75 | 72, 73, 74 | sylancl 404 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
| 76 | | simpr3 946 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
| 77 | 76 | feq1d 5054 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)) |
| 78 | 75, 77 | mpbird 165 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴) |
| 79 | | simpr2 945 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
| 80 | 2 | adantr 270 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ) |
| 81 | | nnuz 8654 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 82 | 80, 81 | syl6eleq 2171 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈
(ℤ≥‘1)) |
| 83 | | eluzfz2 9051 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
| 84 | 82, 83 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
| 85 | 72, 84 | ffvelrnd 5324 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴) |
| 86 | 79, 85 | eqeltrrd 2156 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵 ∈ 𝐴) |
| 87 | | ffn 5066 |
. . . . . . . . 9
⊢ (𝐺:(1...(𝑁 + 1))⟶𝐴 → 𝐺 Fn (1...(𝑁 + 1))) |
| 88 | 72, 87 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1))) |
| 89 | | fnressn 5370 |
. . . . . . . 8
⊢ ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
| 90 | 88, 84, 89 | syl2anc 403 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
| 91 | | opeq2 3571 |
. . . . . . . . 9
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → 〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉 = 〈(𝑁 + 1), 𝐵〉) |
| 92 | 91 | sneqd 3411 |
. . . . . . . 8
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
| 93 | 79, 92 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
| 94 | 90, 93 | eqtrd 2113 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), 𝐵〉}) |
| 95 | 94, 5 | syl6reqr 2132 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)})) |
| 96 | 76, 95 | uneq12d 3127 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹 ∪ 𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))) |
| 97 | | simpl 107 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈
ℕ0) |
| 98 | 97, 20 | syl6eleq 2171 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
| 99 | 15, 98, 22 | sylancr 405 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
| 100 | 99 | reseq2d 4630 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)}))) |
| 101 | | resundi 4643 |
. . . . 5
⊢ (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) |
| 102 | 100, 101 | syl6req 2130 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1)))) |
| 103 | | fnresdm 5028 |
. . . . 5
⊢ (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
| 104 | 72, 87, 103 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
| 105 | 96, 102, 104 | 3eqtrrd 2118 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹 ∪ 𝐻)) |
| 106 | 78, 86, 105 | 3jca 1118 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) |
| 107 | 71, 106 | impbida 560 |
1
⊢ (𝑁 ∈ ℕ0
→ ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) |