![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaodan | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Ref | Expression |
---|---|
jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 113 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 113 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 2, 4 | jaod 669 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
6 | 5 | imp 122 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: mpjaodan 744 ordi 762 andi 764 dcor 876 ccase 905 mpjao3dan 1238 relop 4504 poltletr 4745 tfrlemisucaccv 5962 phplem3 6340 ssfilem 6360 diffitest 6371 reapmul1 7695 apsqgt0 7701 recexaplem2 7742 nnnn0addcl 8318 un0addcl 8321 un0mulcl 8322 elz2 8419 xrltso 8871 fzsplit2 9069 fzsuc2 9096 elfzp12 9116 expp1 9483 expnegap0 9484 expcllem 9487 mulexpzap 9516 expaddzap 9520 expmulzap 9522 bcpasc 9693 odd2np1 10272 dvdslcm 10451 lcmeq0 10453 lcmcl 10454 lcmneg 10456 lcmgcd 10460 rpexp1i 10533 |
Copyright terms: Public domain | W3C validator |