ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i GIF version

Theorem genplt2i 6700
Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genplt2i.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genplt2i ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 107 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴 <Q 𝐵)
2 genplt2i.ord . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
32adantl 271 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
4 ltrelnq 6555 . . . . . 6 <Q ⊆ (Q × Q)
54brel 4410 . . . . 5 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
64brel 4410 . . . . 5 (𝐶 <Q 𝐷 → (𝐶Q𝐷Q))
7 simpll 495 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐴Q)
85, 6, 7syl2an 283 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴Q)
9 simplr 496 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐵Q)
105, 6, 9syl2an 283 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐵Q)
11 simprl 497 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐶Q)
125, 6, 11syl2an 283 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶Q)
13 genplt2i.com . . . . 5 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
1413adantl 271 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
153, 8, 10, 12, 14caovord2d 5690 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)))
161, 15mpbid 145 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))
17 simpr 108 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶 <Q 𝐷)
18 simprr 498 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐷Q)
195, 6, 18syl2an 283 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐷Q)
203, 12, 19, 10caovordd 5689 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)))
2117, 20mpbid 145 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))
22 ltsonq 6588 . . 3 <Q Or Q
2322, 4sotri 4740 . 2 (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
2416, 21, 23syl2anc 403 1 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  Qcnq 6470   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543
This theorem is referenced by:  genprndl  6711  genprndu  6712  genpdisj  6713
  Copyright terms: Public domain W3C validator