ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr2 GIF version

Theorem indstr2 8696
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1 (𝑥 = 1 → (𝜑𝜒))
indstr2.2 (𝑥 = 𝑦 → (𝜑𝜓))
indstr2.3 𝜒
indstr2.4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr2 (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 elnn1uz2 8694 . . 3 (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)))
3 indstr2.3 . . . . 5 𝜒
4 nnnlt1 8065 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
54adantl 271 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
6 breq2 3789 . . . . . . . . . . 11 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
76adantr 270 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦 < 1))
85, 7mtbird 630 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥)
98pm2.21d 581 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝜓))
109ralrimiva 2434 . . . . . . 7 (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
11 pm5.5 240 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
1210, 11syl 14 . . . . . 6 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
13 indstr2.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜒))
1412, 13bitrd 186 . . . . 5 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜒))
153, 14mpbiri 166 . . . 4 (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
16 indstr2.4 . . . 4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
1715, 16jaoi 668 . . 3 ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
182, 17sylbi 119 . 2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
191, 18indstr 8681 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  wral 2348   class class class wbr 3785  cfv 4922  1c1 6982   < clt 7153  cn 8039  2c2 8089  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator