![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indstr2 | GIF version |
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
Ref | Expression |
---|---|
indstr2.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) |
indstr2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
indstr2.3 | ⊢ 𝜒 |
indstr2.4 | ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
Ref | Expression |
---|---|
indstr2 | ⊢ (𝑥 ∈ ℕ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indstr2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | elnn1uz2 8694 | . . 3 ⊢ (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2))) | |
3 | indstr2.3 | . . . . 5 ⊢ 𝜒 | |
4 | nnnlt1 8065 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → ¬ 𝑦 < 1) | |
5 | 4 | adantl 271 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1) |
6 | breq2 3789 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑦 < 𝑥 ↔ 𝑦 < 1)) | |
7 | 6 | adantr 270 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ 𝑦 < 1)) |
8 | 5, 7 | mtbird 630 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥) |
9 | 8 | pm2.21d 581 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝜓)) |
10 | 9 | ralrimiva 2434 | . . . . . . 7 ⊢ (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓)) |
11 | pm5.5 240 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) |
13 | indstr2.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) | |
14 | 12, 13 | bitrd 186 | . . . . 5 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜒)) |
15 | 3, 14 | mpbiri 166 | . . . 4 ⊢ (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
16 | indstr2.4 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
17 | 15, 16 | jaoi 668 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
18 | 2, 17 | sylbi 119 | . 2 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
19 | 1, 18 | indstr 8681 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 ∀wral 2348 class class class wbr 3785 ‘cfv 4922 1c1 6982 < clt 7153 ℕcn 8039 2c2 8089 ℤ≥cuz 8619 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-uz 8620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |