ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq GIF version

Theorem ltdcnq 6587
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)

Proof of Theorem ltdcnq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 6568 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nqpi 6568 . . . 4 (𝐵Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q ))
31, 2anim12i 331 . . 3 ((𝐴Q𝐵Q) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
4 ee4anv 1850 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
53, 4sylibr 132 . 2 ((𝐴Q𝐵Q) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
6 mulclpi 6518 . . . . . . . . 9 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
7 mulclpi 6518 . . . . . . . . 9 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
8 ltdcpi 6513 . . . . . . . . 9 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
96, 7, 8syl2an 283 . . . . . . . 8 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
109an42s 553 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
11 ordpipqqs 6564 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1211dcbid 781 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~QDECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1310, 12mpbird 165 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
1413ad2ant2r 492 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
15 breq12 3790 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1615ad2ant2l 491 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1716dcbid 781 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (DECID 𝐴 <Q 𝐵DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1814, 17mpbird 165 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
1918exlimivv 1817 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
2019exlimivv 1817 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
215, 20syl 14 1 ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  DECID wdc 775   = wceq 1284  wex 1421  wcel 1433  cop 3401   class class class wbr 3785  (class class class)co 5532  [cec 6127  Ncnpi 6462   ·N cmi 6464   <N clti 6465   ~Q ceq 6469  Qcnq 6470   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543
This theorem is referenced by:  distrlem4prl  6774  distrlem4pru  6775
  Copyright terms: Public domain W3C validator