![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcanenq | GIF version |
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
mulcanenq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 938 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐴 ∈ N) | |
2 | simp2 939 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐵 ∈ N) | |
3 | simp3 940 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐶 ∈ N) | |
4 | mulcompig 6521 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) | |
5 | 4 | adantl 271 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) |
6 | mulasspig 6522 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) | |
7 | 6 | adantl 271 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) |
8 | 1, 2, 3, 5, 7 | caov32d 5701 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)) |
9 | mulclpi 6518 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
10 | mulclpi 6518 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) ∈ N) | |
11 | 9, 10 | anim12i 331 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N)) |
12 | simpr 108 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) | |
13 | 12 | an4s 552 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) |
14 | 11, 13 | jca 300 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
15 | 14 | 3impdi 1224 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
16 | enqbreq 6546 | . . 3 ⊢ ((((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) | |
17 | 15, 16 | syl 14 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) |
18 | 8, 17 | mpbird 165 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 〈cop 3401 class class class wbr 3785 (class class class)co 5532 Ncnpi 6462 ·N cmi 6464 ~Q ceq 6469 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-ni 6494 df-mi 6496 df-enq 6537 |
This theorem is referenced by: mulcanenqec 6576 |
Copyright terms: Public domain | W3C validator |