![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnmword | GIF version |
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnmword | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 294 | . . . 4 ⊢ (∅ ∈ 𝐶 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶))) | |
2 | nnmord 6113 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) | |
3 | 2 | 3com12 1142 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) |
4 | 1, 3 | sylan9bbr 450 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵 ∈ 𝐴 ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) |
5 | 4 | notbid 624 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) |
6 | simpl1 941 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω) | |
7 | simpl2 942 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω) | |
8 | nntri1 6097 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
9 | 6, 7, 8 | syl2anc 403 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
10 | simpl3 943 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω) | |
11 | nnmcl 6083 | . . . 4 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) ∈ ω) | |
12 | 10, 6, 11 | syl2anc 403 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ω) |
13 | nnmcl 6083 | . . . 4 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) ∈ ω) | |
14 | 10, 7, 13 | syl2anc 403 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐵) ∈ ω) |
15 | nntri1 6097 | . . 3 ⊢ (((𝐶 ·𝑜 𝐴) ∈ ω ∧ (𝐶 ·𝑜 𝐵) ∈ ω) → ((𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵) ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) | |
16 | 12, 14, 15 | syl2anc 403 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵) ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))) |
17 | 5, 9, 16 | 3bitr4d 218 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 ∈ wcel 1433 ⊆ wss 2973 ∅c0 3251 ωcom 4331 (class class class)co 5532 ·𝑜 comu 6022 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 |
This theorem is referenced by: nnmcan 6115 archnqq 6607 |
Copyright terms: Public domain | W3C validator |