ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmword GIF version

Theorem nnmword 6114
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmword
StepHypRef Expression
1 iba 294 . . . 4 (∅ ∈ 𝐶 → (𝐵𝐴 ↔ (𝐵𝐴 ∧ ∅ ∈ 𝐶)))
2 nnmord 6113 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
323com12 1142 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
41, 3sylan9bbr 450 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 ↔ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
54notbid 624 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ 𝐵𝐴 ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
6 simpl1 941 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
7 simpl2 942 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
8 nntri1 6097 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
96, 7, 8syl2anc 403 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
10 simpl3 943 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
11 nnmcl 6083 . . . 4 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) ∈ ω)
1210, 6, 11syl2anc 403 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ω)
13 nnmcl 6083 . . . 4 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) ∈ ω)
1410, 7, 13syl2anc 403 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐵) ∈ ω)
15 nntri1 6097 . . 3 (((𝐶 ·𝑜 𝐴) ∈ ω ∧ (𝐶 ·𝑜 𝐵) ∈ ω) → ((𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵) ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
1612, 14, 15syl2anc 403 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵) ↔ ¬ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
175, 9, 163bitr4d 218 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 919  wcel 1433  wss 2973  c0 3251  ωcom 4331  (class class class)co 5532   ·𝑜 comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  nnmcan  6115  archnqq  6607
  Copyright terms: Public domain W3C validator