ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru GIF version

Theorem nqpru 6742
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqpru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 6679 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
31, 2sylan 277 . . . . 5 ((𝐵P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
4 elprnqu 6672 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
51, 4sylan 277 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
65ad2ant2r 492 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥Q)
7 simprl 497 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (2nd𝐵))
8 vex 2604 . . . . . . . . . . . 12 𝑥 ∈ V
9 breq1 3788 . . . . . . . . . . . 12 (𝑙 = 𝑥 → (𝑙 <Q 𝐴𝑥 <Q 𝐴))
108, 9elab 2738 . . . . . . . . . . 11 (𝑥 ∈ {𝑙𝑙 <Q 𝐴} ↔ 𝑥 <Q 𝐴)
1110biimpri 131 . . . . . . . . . 10 (𝑥 <Q 𝐴𝑥 ∈ {𝑙𝑙 <Q 𝐴})
12 ltnqex 6739 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
13 gtnqex 6740 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1412, 13op1st 5793 . . . . . . . . . . 11 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
1514eleq2i 2145 . . . . . . . . . 10 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑙𝑙 <Q 𝐴})
1611, 15sylibr 132 . . . . . . . . 9 (𝑥 <Q 𝐴𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1716ad2antll 474 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
18 19.8a 1522 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
196, 7, 17, 18syl12anc 1167 . . . . . . 7 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
20 df-rex 2354 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2119, 20sylibr 132 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
22 elprnqu 6672 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
231, 22sylan 277 . . . . . . . 8 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
24 nqprlu 6737 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
25 ltdfpr 6696 . . . . . . . . 9 ((𝐵P ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2624, 25sylan2 280 . . . . . . . 8 ((𝐵P𝐴Q) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2723, 26syldan 276 . . . . . . 7 ((𝐵P𝐴 ∈ (2nd𝐵)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2827adantr 270 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2921, 28mpbird 165 . . . . 5 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
303, 29rexlimddv 2481 . . . 4 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
3130ex 113 . . 3 (𝐵P → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3231adantl 271 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3326ancoms 264 . . . . 5 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
3433biimpa 290 . . . 4 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
3515, 10bitri 182 . . . . . . . 8 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐴)
3635biimpi 118 . . . . . . 7 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑥 <Q 𝐴)
3736ad2antll 474 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → 𝑥 <Q 𝐴)
3837adantl 271 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 <Q 𝐴)
39 simpllr 500 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐵P)
40 simprrl 505 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 ∈ (2nd𝐵))
41 prcunqu 6675 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
421, 41sylan 277 . . . . . 6 ((𝐵P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4339, 40, 42syl2anc 403 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐴 ∈ (2nd𝐵))
4534, 44rexlimddv 2481 . . 3 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 ∈ (2nd𝐵))
4645ex 113 . 2 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ → 𝐴 ∈ (2nd𝐵)))
4732, 46impbid 127 1 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wex 1421  wcel 1433  {cab 2067  wrex 2349  cop 3401   class class class wbr 3785  cfv 4922  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  prplnqu  6810  caucvgprprlemmu  6885  caucvgprprlemopu  6889  caucvgprprlemexbt  6896  caucvgprprlem2  6900
  Copyright terms: Public domain W3C validator