ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oa1suc GIF version

Theorem oa1suc 6070
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 6024 . . . 4 1𝑜 = suc ∅
21oveq2i 5543 . . 3 (𝐴 +𝑜 1𝑜) = (𝐴 +𝑜 suc ∅)
3 peano1 4335 . . . 4 ∅ ∈ ω
4 onasuc 6069 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +𝑜 suc ∅) = suc (𝐴 +𝑜 ∅))
53, 4mpan2 415 . . 3 (𝐴 ∈ On → (𝐴 +𝑜 suc ∅) = suc (𝐴 +𝑜 ∅))
62, 5syl5eq 2125 . 2 (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc (𝐴 +𝑜 ∅))
7 oa0 6060 . . 3 (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴)
8 suceq 4157 . . 3 ((𝐴 +𝑜 ∅) = 𝐴 → suc (𝐴 +𝑜 ∅) = suc 𝐴)
97, 8syl 14 . 2 (𝐴 ∈ On → suc (𝐴 +𝑜 ∅) = suc 𝐴)
106, 9eqtrd 2113 1 (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  c0 3251  Oncon0 4118  suc csuc 4120  ωcom 4331  (class class class)co 5532  1𝑜c1o 6017   +𝑜 coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028
This theorem is referenced by:  o1p1e2  6071  nnaordex  6123  indpi  6532  prarloclemlo  6684
  Copyright terms: Public domain W3C validator