| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem3g | GIF version | ||
| Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6340 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem3g | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐴)) | |
| 2 | 1 | anbi2d 451 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴))) |
| 3 | sneq 3409 | . . . . . 6 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 4 | 3 | difeq2d 3090 | . . . . 5 ⊢ (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵})) |
| 5 | 4 | breq2d 3797 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
| 6 | 2, 5 | imbi12d 232 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))) |
| 7 | eleq1 2141 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω)) | |
| 8 | suceq 4157 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
| 9 | 8 | eleq2d 2148 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎 ↔ 𝑏 ∈ suc 𝐴)) |
| 10 | 7, 9 | anbi12d 456 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴))) |
| 11 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 12 | 8 | difeq1d 3089 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏})) |
| 13 | 11, 12 | breq12d 3798 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
| 14 | 10, 13 | imbi12d 232 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))) |
| 15 | vex 2604 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 16 | vex 2604 | . . . . . 6 ⊢ 𝑏 ∈ V | |
| 17 | 15, 16 | phplem3 6340 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) |
| 18 | 14, 17 | vtoclg 2658 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
| 19 | 18 | anabsi5 543 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) |
| 20 | 6, 19 | vtoclg 2658 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
| 21 | 20 | anabsi7 545 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∖ cdif 2970 {csn 3398 class class class wbr 3785 suc csuc 4120 ωcom 4331 ≈ cen 6242 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-en 6245 |
| This theorem is referenced by: phplem4dom 6348 phpm 6351 phplem4on 6353 |
| Copyright terms: Public domain | W3C validator |