![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 6693. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 6505 | . . . . 5 ⊢ 1𝑜 ∈ N | |
3 | ltpiord 6509 | . . . . 5 ⊢ ((1𝑜 ∈ N ∧ 𝑁 ∈ N) → (1𝑜 <N 𝑁 ↔ 1𝑜 ∈ 𝑁)) | |
4 | 2, 3 | mpan 414 | . . . 4 ⊢ (𝑁 ∈ N → (1𝑜 <N 𝑁 ↔ 1𝑜 ∈ 𝑁)) |
5 | 4 | biimpa 290 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → 1𝑜 ∈ 𝑁) |
6 | piord 6501 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4248 | . . . 4 ⊢ (Ord 𝑁 → (1𝑜 ∈ 𝑁 → suc 1𝑜 ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1𝑜 ∈ 𝑁 → suc 1𝑜 ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 61 | . 2 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → suc 1𝑜 ⊆ 𝑁) |
10 | df-2o 6025 | . . . 4 ⊢ 2𝑜 = suc 1𝑜 | |
11 | 10 | sseq1i 3023 | . . 3 ⊢ (2𝑜 ⊆ 𝑁 ↔ suc 1𝑜 ⊆ 𝑁) |
12 | pinn 6499 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6117 | . . . . . 6 ⊢ 2𝑜 ∈ ω | |
14 | nnawordex 6124 | . . . . . 6 ⊢ ((2𝑜 ∈ ω ∧ 𝑁 ∈ ω) → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 414 | . . . . 5 ⊢ (𝑁 ∈ ω → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
17 | 16 | adantr 270 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
18 | 11, 17 | syl5bbr 192 | . 2 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → (suc 1𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 145 | 1 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 ⊆ wss 2973 class class class wbr 3785 Ord word 4117 suc csuc 4120 ωcom 4331 (class class class)co 5532 1𝑜c1o 6017 2𝑜c2o 6018 +𝑜 coa 6021 Ncnpi 6462 <N clti 6465 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-ni 6494 df-lti 6497 |
This theorem is referenced by: prarloclem5 6690 |
Copyright terms: Public domain | W3C validator |