ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemn Unicode version

Theorem prarloclemn 6689
Description: Subtracting two from a positive integer. Lemma for prarloc 6693. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
prarloclemn  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
Distinct variable group:    x, N

Proof of Theorem prarloclemn
StepHypRef Expression
1 simpl 107 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  N  e.  N. )
2 1pi 6505 . . . . 5  |-  1o  e.  N.
3 ltpiord 6509 . . . . 5  |-  ( ( 1o  e.  N.  /\  N  e.  N. )  ->  ( 1o  <N  N  <->  1o  e.  N ) )
42, 3mpan 414 . . . 4  |-  ( N  e.  N.  ->  ( 1o  <N  N  <->  1o  e.  N ) )
54biimpa 290 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  1o  e.  N )
6 piord 6501 . . . 4  |-  ( N  e.  N.  ->  Ord  N )
7 ordsucss 4248 . . . 4  |-  ( Ord 
N  ->  ( 1o  e.  N  ->  suc  1o  C_  N ) )
86, 7syl 14 . . 3  |-  ( N  e.  N.  ->  ( 1o  e.  N  ->  suc  1o  C_  N ) )
91, 5, 8sylc 61 . 2  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  suc  1o  C_  N )
10 df-2o 6025 . . . 4  |-  2o  =  suc  1o
1110sseq1i 3023 . . 3  |-  ( 2o  C_  N  <->  suc  1o  C_  N
)
12 pinn 6499 . . . . 5  |-  ( N  e.  N.  ->  N  e.  om )
13 2onn 6117 . . . . . 6  |-  2o  e.  om
14 nnawordex 6124 . . . . . 6  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1513, 14mpan 414 . . . . 5  |-  ( N  e.  om  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1612, 15syl 14 . . . 4  |-  ( N  e.  N.  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1716adantr 270 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  -> 
( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1811, 17syl5bbr 192 . 2  |-  ( ( N  e.  N.  /\  1o  <N  N )  -> 
( suc  1o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
199, 18mpbid 145 1  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E.wrex 2349    C_ wss 2973   class class class wbr 3785   Ord word 4117   suc csuc 4120   omcom 4331  (class class class)co 5532   1oc1o 6017   2oc2o 6018    +o coa 6021   N.cnpi 6462    <N clti 6465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-ni 6494  df-lti 6497
This theorem is referenced by:  prarloclem5  6690
  Copyright terms: Public domain W3C validator