![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prdisj | GIF version |
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
prdisj | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2141 | . . . . 5 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ Q ↔ 𝐴 ∈ Q)) | |
2 | 1 | anbi2d 451 | . . . 4 ⊢ (𝑞 = 𝐴 → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) ↔ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q))) |
3 | eleq1 2141 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
4 | eleq1 2141 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
5 | 3, 4 | anbi12d 456 | . . . . 5 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
6 | 5 | notbid 624 | . . . 4 ⊢ (𝑞 = 𝐴 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
7 | 2, 6 | imbi12d 232 | . . 3 ⊢ (𝑞 = 𝐴 → (((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) ↔ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)))) |
8 | elinp 6664 | . . . . 5 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
9 | simpr2 945 | . . . . 5 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
10 | 8, 9 | sylbi 119 | . . . 4 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
11 | 10 | r19.21bi 2449 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
12 | 7, 11 | vtoclg 2658 | . 2 ⊢ (𝐴 ∈ Q → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
13 | 12 | anabsi7 545 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 Qcnq 6470 <Q cltq 6475 Pcnp 6481 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-qs 6135 df-ni 6494 df-nqqs 6538 df-inp 6656 |
This theorem is referenced by: ltpopr 6785 addcanprleml 6804 addcanprlemu 6805 |
Copyright terms: Public domain | W3C validator |