ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr GIF version

Theorem ltpopr 6785
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 6786. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr <P Po P

Proof of Theorem ltpopr
Dummy variables 𝑟 𝑞 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2 prdisj 6682 . . . . . . . 8 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
31, 2sylan 277 . . . . . . 7 ((𝑠P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
4 ancom 262 . . . . . . 7 ((𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)) ↔ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
53, 4sylnib 633 . . . . . 6 ((𝑠P𝑞Q) → ¬ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
65nrexdv 2454 . . . . 5 (𝑠P → ¬ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
7 ltdfpr 6696 . . . . . 6 ((𝑠P𝑠P) → (𝑠<P 𝑠 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠))))
87anidms 389 . . . . 5 (𝑠P → (𝑠<P 𝑠 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠))))
96, 8mtbird 630 . . . 4 (𝑠P → ¬ 𝑠<P 𝑠)
109adantl 271 . . 3 ((⊤ ∧ 𝑠P) → ¬ 𝑠<P 𝑠)
11 ltdfpr 6696 . . . . . . . . . . 11 ((𝑠P𝑡P) → (𝑠<P 𝑡 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡))))
12113adant3 958 . . . . . . . . . 10 ((𝑠P𝑡P𝑢P) → (𝑠<P 𝑡 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡))))
13 ltdfpr 6696 . . . . . . . . . . 11 ((𝑡P𝑢P) → (𝑡<P 𝑢 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
14133adant1 956 . . . . . . . . . 10 ((𝑠P𝑡P𝑢P) → (𝑡<P 𝑢 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
1512, 14anbi12d 456 . . . . . . . . 9 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) ↔ (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))))
16 reeanv 2523 . . . . . . . . 9 (∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) ↔ (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
1715, 16syl6bbr 196 . . . . . . . 8 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) ↔ ∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))))
1817biimpa 290 . . . . . . 7 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → ∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
19 simprll 503 . . . . . . . . . . 11 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 ∈ (2nd𝑠))
20 prop 6665 . . . . . . . . . . . . . . . . . 18 (𝑡P → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
21 prltlu 6677 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝑡), (2nd𝑡)⟩ ∈ P𝑞 ∈ (1st𝑡) ∧ 𝑟 ∈ (2nd𝑡)) → 𝑞 <Q 𝑟)
2220, 21syl3an1 1202 . . . . . . . . . . . . . . . . 17 ((𝑡P𝑞 ∈ (1st𝑡) ∧ 𝑟 ∈ (2nd𝑡)) → 𝑞 <Q 𝑟)
23223adant3r 1166 . . . . . . . . . . . . . . . 16 ((𝑡P𝑞 ∈ (1st𝑡) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → 𝑞 <Q 𝑟)
24233adant2l 1163 . . . . . . . . . . . . . . 15 ((𝑡P ∧ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → 𝑞 <Q 𝑟)
25243expb 1139 . . . . . . . . . . . . . 14 ((𝑡P ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
26253ad2antl2 1101 . . . . . . . . . . . . 13 (((𝑠P𝑡P𝑢P) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
2726adantlr 460 . . . . . . . . . . . 12 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
28 prop 6665 . . . . . . . . . . . . . . . . 17 (𝑢P → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ P)
29 prcdnql 6674 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝑢), (2nd𝑢)⟩ ∈ P𝑟 ∈ (1st𝑢)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3028, 29sylan 277 . . . . . . . . . . . . . . . 16 ((𝑢P𝑟 ∈ (1st𝑢)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3130adantrl 461 . . . . . . . . . . . . . . 15 ((𝑢P ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3231adantrl 461 . . . . . . . . . . . . . 14 ((𝑢P ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
33323ad2antl3 1102 . . . . . . . . . . . . 13 (((𝑠P𝑡P𝑢P) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3433adantlr 460 . . . . . . . . . . . 12 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3527, 34mpd 13 . . . . . . . . . . 11 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 ∈ (1st𝑢))
3619, 35jca 300 . . . . . . . . . 10 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)))
3736ex 113 . . . . . . . . 9 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
3837rexlimdvw 2480 . . . . . . . 8 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
3938reximdv 2462 . . . . . . 7 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
4018, 39mpd 13 . . . . . 6 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)))
41 ltdfpr 6696 . . . . . . . . 9 ((𝑠P𝑢P) → (𝑠<P 𝑢 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
42413adant2 957 . . . . . . . 8 ((𝑠P𝑡P𝑢P) → (𝑠<P 𝑢 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
4342biimprd 156 . . . . . . 7 ((𝑠P𝑡P𝑢P) → (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)) → 𝑠<P 𝑢))
4443adantr 270 . . . . . 6 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)) → 𝑠<P 𝑢))
4540, 44mpd 13 . . . . 5 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → 𝑠<P 𝑢)
4645ex 113 . . . 4 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) → 𝑠<P 𝑢))
4746adantl 271 . . 3 ((⊤ ∧ (𝑠P𝑡P𝑢P)) → ((𝑠<P 𝑡𝑡<P 𝑢) → 𝑠<P 𝑢))
4810, 47ispod 4059 . 2 (⊤ → <P Po P)
4948trud 1293 1 <P Po P
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 919  wtru 1285  wcel 1433  wrex 2349  cop 3401   class class class wbr 3785   Po wpo 4049  cfv 4922  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltsopr  6786
  Copyright terms: Public domain W3C validator