ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota GIF version

Theorem prsrriota 6964
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem prsrriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 srpospr 6959 . . 3 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
2 reurex 2567 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
31, 2syl 14 . 2 ((𝐴R ∧ 0R <R 𝐴) → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
4 simprr 498 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
5 simprl 497 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦P)
6 srpospr 6959 . . . . . . 7 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
76adantr 270 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
8 oveq1 5539 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P))
98opeq1d 3576 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
109eceq1d 6165 . . . . . . . 8 (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1110eqeq1d 2089 . . . . . . 7 (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴))
1211riota2 5510 . . . . . 6 ((𝑦P ∧ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
135, 7, 12syl2anc 403 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
144, 13mpbid 145 . . . 4 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)
15 oveq1 5539 . . . . . 6 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P))
1615opeq1d 3576 . . . . 5 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
1716eceq1d 6165 . . . 4 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1814, 17syl 14 . . 3 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1918, 4eqtrd 2113 . 2 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
203, 19rexlimddv 2481 1 ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wrex 2349  ∃!wreu 2350  cop 3401   class class class wbr 3785  crio 5487  (class class class)co 5532  [cec 6127  Pcnp 6481  1Pc1p 6482   +P cpp 6483   ~R cer 6486  Rcnr 6487  0Rc0r 6488   <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-ltr 6907  df-0r 6908
This theorem is referenced by:  caucvgsrlemfv  6967  caucvgsrlemgt1  6971
  Copyright terms: Public domain W3C validator