![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version |
Description: Lemma for recvguniq 9881. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
Ref | Expression |
---|---|
recvguniqlem | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 2, 3 | ffvelrnd 5324 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 1, 5 | resubcld 7485 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 8277 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 7148 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
10 | 5, 7 | readdcld 7148 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
12 | 4, 10, 7, 11 | ltadd1dd 7656 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
13 | 5 | recnd 7147 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 7 | recnd 7147 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
15 | 13, 14, 14 | addassd 7141 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
16 | 6 | recnd 7147 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 16 | 2halvesd 8276 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
18 | 17 | oveq2d 5548 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
19 | 1 | recnd 7147 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 13, 19 | pncan3d 7422 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
21 | 15, 18, 20 | 3eqtrd 2117 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
22 | 12, 21 | breqtrd 3809 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
23 | 1, 8, 1, 9, 22 | lttrd 7235 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
24 | 1 | ltnrd 7222 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
25 | 23, 24 | pm2.21fal 1304 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊥wfal 1289 ∈ wcel 1433 class class class wbr 3785 ⟶wf 4918 ‘cfv 4922 (class class class)co 5532 ℝcr 6980 + caddc 6984 < clt 7153 − cmin 7279 / cdiv 7760 ℕcn 8039 2c2 8089 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-2 8098 |
This theorem is referenced by: recvguniq 9881 |
Copyright terms: Public domain | W3C validator |