ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfn GIF version

Theorem shftfn 9712
Description: Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfn ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem shftfn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4482 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
21a1i 9 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3 fnfun 5016 . . . . . 6 (𝐹 Fn 𝐵 → Fun 𝐹)
43adantr 270 . . . . 5 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun 𝐹)
5 funmo 4937 . . . . . . 7 (Fun 𝐹 → ∃*𝑤(𝑧𝐴)𝐹𝑤)
6 vex 2604 . . . . . . . . . 10 𝑧 ∈ V
7 vex 2604 . . . . . . . . . 10 𝑤 ∈ V
8 eleq1 2141 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ))
9 oveq1 5539 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
109breq1d 3795 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑦))
118, 10anbi12d 456 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦)))
12 breq2 3789 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑧𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑤))
1312anbi2d 451 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)))
14 eqid 2081 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
156, 7, 11, 13, 14brab 4027 . . . . . . . . 9 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤))
1615simprbi 269 . . . . . . . 8 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 → (𝑧𝐴)𝐹𝑤)
1716moimi 2006 . . . . . . 7 (∃*𝑤(𝑧𝐴)𝐹𝑤 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
185, 17syl 14 . . . . . 6 (Fun 𝐹 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
1918alrimiv 1795 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
204, 19syl 14 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
21 dffun6 4936 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤))
222, 20, 21sylanbrc 408 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423shftfval 9709 . . . . 5 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2524adantl 271 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2625funeqd 4943 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}))
2722, 26mpbird 165 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴))
2823shftdm 9710 . . 3 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
29 fndm 5018 . . . . 5 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
3029eleq2d 2148 . . . 4 (𝐹 Fn 𝐵 → ((𝑥𝐴) ∈ dom 𝐹 ↔ (𝑥𝐴) ∈ 𝐵))
3130rabbidv 2593 . . 3 (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
3228, 31sylan9eqr 2135 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
33 df-fn 4925 . 2 ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}))
3427, 32, 33sylanbrc 408 1 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  ∃*wmo 1942  {crab 2352  Vcvv 2601   class class class wbr 3785  {copab 3838  dom cdm 4363  Rel wrel 4368  Fun wfun 4916   Fn wfn 4917  (class class class)co 5532  cc 6979  cmin 7279   shift cshi 9702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-shft 9703
This theorem is referenced by:  shftf  9718
  Copyright terms: Public domain W3C validator