| Step | Hyp | Ref
| Expression |
| 1 | | simpr 108 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) |
| 2 | 1 | adantr 270 |
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ) |
| 3 | | nn0cn 8298 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) |
| 4 | 3 | 3ad2ant1 959 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℂ) |
| 5 | 4 | ad2antrr 471 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 6 | | nn0z 8371 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
| 7 | | zq 8711 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℚ) |
| 9 | 8 | 3ad2ant1 959 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℚ) |
| 10 | 9 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ) |
| 11 | | simpl2 942 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ) |
| 12 | | simpl3 943 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀) |
| 13 | 10, 11, 12 | modqcld 9330 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ) |
| 14 | | qcn 8719 |
. . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ) |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ) |
| 16 | | eleq1 2141 |
. . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 17 | 16 | adantl 271 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 18 | 15, 17 | mpbid 145 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ) |
| 19 | 18 | adantr 270 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ) |
| 20 | | zcn 8356 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℂ) |
| 21 | 20 | adantl 271 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
| 22 | | qcn 8719 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℚ → 𝑀 ∈
ℂ) |
| 23 | 11, 22 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ) |
| 24 | 23 | adantr 270 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 25 | 21, 24 | mulcld 7139 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ) |
| 26 | 5, 19, 25 | subadd2d 7438 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)) |
| 27 | | eqcom 2083 |
. . . . . . . . 9
⊢ (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴) |
| 28 | 26, 27 | syl6rbbr 197 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) |
| 29 | 4 | adantr 270 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ) |
| 30 | 29, 18 | subcld 7419 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 − 𝐵) ∈ ℂ) |
| 31 | 30 | adantr 270 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) |
| 32 | | qre 8710 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℚ → 𝑀 ∈
ℝ) |
| 33 | 32 | 3ad2ant2 960 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ∈
ℝ) |
| 34 | 33 | ad2antrr 471 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 35 | 12 | adantr 270 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀) |
| 36 | 34, 35 | gt0ap0d 7728 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0) |
| 37 | 31, 21, 24, 36 | divmulap3d 7911 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) |
| 38 | | oveq2 5540 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 − 𝐵) = (𝐴 − (𝐴 mod 𝑀))) |
| 39 | 38 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 40 | 39 | eqcoms 2084 |
. . . . . . . . . . . 12
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 41 | 40 | adantl 271 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 42 | 41 | adantr 270 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 43 | | modqdiffl 9337 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 44 | 8, 43 | syl3an1 1202 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 45 | 44 | ad2antrr 471 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 46 | 42, 45 | eqtrd 2113 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 47 | 46 | eqeq1d 2089 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) |
| 48 | 28, 37, 47 | 3bitr2d 214 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) |
| 49 | | qre 8710 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
| 50 | 9, 49 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℝ) |
| 51 | | nn0ge0 8313 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 52 | 51 | 3ad2ant1 959 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ 𝐴) |
| 53 | | simp3 940 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
< 𝑀) |
| 54 | | divge0 7951 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀)) |
| 55 | 50, 52, 33, 53, 54 | syl22anc 1170 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ (𝐴 / 𝑀)) |
| 56 | | simp2 939 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ∈
ℚ) |
| 57 | 53 | gt0ne0d 7613 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ≠ 0) |
| 58 | | qdivcl 8728 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ) |
| 59 | 9, 56, 57, 58 | syl3anc 1169 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
(𝐴 / 𝑀) ∈ ℚ) |
| 60 | | 0z 8362 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 61 | | flqge 9284 |
. . . . . . . . . . 11
⊢ (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ)
→ (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤
(⌊‘(𝐴 / 𝑀)))) |
| 62 | 59, 60, 61 | sylancl 404 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → (0
≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀)))) |
| 63 | 55, 62 | mpbid 145 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ (⌊‘(𝐴 /
𝑀))) |
| 64 | | breq2 3789 |
. . . . . . . . 9
⊢
((⌊‘(𝐴 /
𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖)) |
| 65 | 63, 64 | syl5ibcom 153 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) |
| 66 | 65 | ad2antrr 471 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) |
| 67 | 48, 66 | sylbid 148 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖)) |
| 68 | 67 | imp 122 |
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖) |
| 69 | | elnn0z 8364 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
↔ (𝑖 ∈ ℤ
∧ 0 ≤ 𝑖)) |
| 70 | 2, 68, 69 | sylanbrc 408 |
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0) |
| 71 | | oveq1 5539 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀)) |
| 72 | 71 | oveq1d 5547 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵)) |
| 73 | 72 | eqeq2d 2092 |
. . . . 5
⊢ (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 74 | 73 | adantl 271 |
. . . 4
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 75 | | simpr 108 |
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵)) |
| 76 | 70, 74, 75 | rspcedvd 2708 |
. . 3
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
| 77 | | modqmuladdim 9369 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 78 | 6, 77 | syl3an1 1202 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 79 | 78 | imp 122 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) |
| 80 | 76, 79 | r19.29a 2498 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
| 81 | 80 | ex 113 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |