ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 GIF version

Theorem modqmuladdnn0 9370
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modqmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 270 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 nn0cn 8298 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
433ad2ant1 959 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℂ)
54ad2antrr 471 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
6 nn0z 8371 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
7 zq 8711 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
86, 7syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
983ad2ant1 959 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ)
109adantr 270 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ)
11 simpl2 942 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ)
12 simpl3 943 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀)
1310, 11, 12modqcld 9330 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ)
14 qcn 8719 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
1513, 14syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
16 eleq1 2141 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1716adantl 271 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1815, 17mpbid 145 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1918adantr 270 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
20 zcn 8356 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2120adantl 271 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
22 qcn 8719 . . . . . . . . . . . . 13 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
2311, 22syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ)
2423adantr 270 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2521, 24mulcld 7139 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
265, 19, 25subadd2d 7438 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
27 eqcom 2083 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
2826, 27syl6rbbr 197 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
294adantr 270 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
3029, 18subcld 7419 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
3130adantr 270 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
32 qre 8710 . . . . . . . . . . . 12 (𝑀 ∈ ℚ → 𝑀 ∈ ℝ)
33323ad2ant2 960 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℝ)
3433ad2antrr 471 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ)
3512adantr 270 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀)
3634, 35gt0ap0d 7728 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0)
3731, 21, 24, 36divmulap3d 7911 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
38 oveq2 5540 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3938oveq1d 5547 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4039eqcoms 2084 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4140adantl 271 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4241adantr 270 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
43 modqdiffl 9337 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
448, 43syl3an1 1202 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4544ad2antrr 471 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4642, 45eqtrd 2113 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4746eqeq1d 2089 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4828, 37, 473bitr2d 214 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
49 qre 8710 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
509, 49syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℝ)
51 nn0ge0 8313 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
52513ad2ant1 959 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ 𝐴)
53 simp3 940 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀)
54 divge0 7951 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5550, 52, 33, 53, 54syl22anc 1170 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 / 𝑀))
56 simp2 939 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
5753gt0ne0d 7613 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ≠ 0)
58 qdivcl 8728 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
599, 56, 57, 58syl3anc 1169 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 / 𝑀) ∈ ℚ)
60 0z 8362 . . . . . . . . . . 11 0 ∈ ℤ
61 flqge 9284 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6259, 60, 61sylancl 404 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6355, 62mpbid 145 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
64 breq2 3789 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6563, 64syl5ibcom 153 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6665ad2antrr 471 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6748, 66sylbid 148 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6867imp 122 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
69 elnn0z 8364 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
702, 68, 69sylanbrc 408 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
71 oveq1 5539 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
7271oveq1d 5547 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
7372eqeq2d 2092 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473adantl 271 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
75 simpr 108 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7670, 74, 75rspcedvd 2708 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
77 modqmuladdim 9369 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
786, 77syl3an1 1202 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7978imp 122 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
8076, 79r19.29a 2498 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
8180ex 113 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wne 2245  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  cmin 7279   / cdiv 7760  0cn0 8288  cz 8351  cq 8704  cfl 9272   mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-ico 8917  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator