ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 GIF version

Theorem uzin2 9873
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)

Proof of Theorem uzin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 8622 . . . 4 :ℤ⟶𝒫 ℤ
2 ffn 5066 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 7 . . 3 Fn ℤ
4 fvelrnb 5242 . . 3 (ℤ Fn ℤ → (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴))
53, 4ax-mp 7 . 2 (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴)
6 fvelrnb 5242 . . 3 (ℤ Fn ℤ → (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵))
73, 6ax-mp 7 . 2 (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵)
8 ineq1 3160 . . 3 ((ℤ𝑥) = 𝐴 → ((ℤ𝑥) ∩ (ℤ𝑦)) = (𝐴 ∩ (ℤ𝑦)))
98eleq1d 2147 . 2 ((ℤ𝑥) = 𝐴 → (((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ))
10 ineq2 3161 . . 3 ((ℤ𝑦) = 𝐵 → (𝐴 ∩ (ℤ𝑦)) = (𝐴𝐵))
1110eleq1d 2147 . 2 ((ℤ𝑦) = 𝐵 → ((𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴𝐵) ∈ ran ℤ))
12 uzin 8651 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) = (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)))
13 simpr 108 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
14 simpl 107 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
15 zdcle 8424 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥𝑦)
1613, 14, 15ifcldcd 3381 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
17 fnfvelrn 5320 . . . 4 ((ℤ Fn ℤ ∧ if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
183, 16, 17sylancr 405 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
1912, 18eqeltrd 2155 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ)
205, 7, 9, 11, 192gencl 2632 1 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wrex 2349  cin 2972  ifcif 3351  𝒫 cpw 3382   class class class wbr 3785  ran crn 4364   Fn wfn 4917  wf 4918  cfv 4922  cle 7154  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  rexanuz  9874
  Copyright terms: Public domain W3C validator