ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz GIF version

Theorem uzsubsubfz 9066
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 8625 . . 3 (𝐿 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿))
2 eluz2 8625 . . . 4 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
3 simpr 108 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpr 108 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54adantr 270 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zsubcl 8392 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
76adantlr 460 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
85, 7zsubcld 8474 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑁 − (𝐿𝑀)) ∈ ℤ)
93, 5, 83jca 1118 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
109ex 113 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
11103adant3 958 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1211com12 30 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1312adantr 270 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1413imp 122 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
15 zre 8355 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615adantl 271 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1716adantr 270 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝑁 ∈ ℝ)
18 zre 8355 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1918adantr 270 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℝ)
2019adantr 270 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝐿 ∈ ℝ)
2117, 20subge0d 7635 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
2221exbiri 374 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → (𝐿𝑁 → 0 ≤ (𝑁𝐿))))
2322com23 77 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿))))
24233impia 1135 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿)))
2524impcom 123 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝑁𝐿))
26 zre 8355 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2726adantr 270 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℝ)
2827adantr 270 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℝ)
29 resubcl 7372 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝐿) ∈ ℝ)
3015, 18, 29syl2anr 284 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℝ)
31303adant3 958 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℝ)
3231adantl 271 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁𝐿) ∈ ℝ)
3328, 32addge02d 7634 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝑁𝐿) ↔ 𝑀 ≤ ((𝑁𝐿) + 𝑀)))
3425, 33mpbid 145 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ ((𝑁𝐿) + 𝑀))
35 zcn 8356 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
36353ad2ant2 960 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℂ)
3736adantl 271 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℂ)
38 zcn 8356 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
39383ad2ant1 959 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℂ)
4039adantl 271 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝐿 ∈ ℂ)
41 zcn 8356 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 270 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℂ)
4342adantr 270 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℂ)
4437, 40, 43subsubd 7447 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) = ((𝑁𝐿) + 𝑀))
4534, 44breqtrrd 3811 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ (𝑁 − (𝐿𝑀)))
46183ad2ant1 959 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℝ)
47 subge0 7579 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 26, 47syl2anr 284 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4948exbiri 374 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐿 → 0 ≤ (𝐿𝑀))))
5049com23 77 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀𝐿 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 0 ≤ (𝐿𝑀))))
5150imp31 252 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝐿𝑀))
52153ad2ant2 960 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℝ)
5352adantl 271 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℝ)
54 resubcl 7372 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
5546, 27, 54syl2anr 284 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝐿𝑀) ∈ ℝ)
5653, 55subge02d 7637 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
5751, 56mpbid 145 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ≤ 𝑁)
5845, 57jca 300 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
59 elfz2 9036 . . . . . . 7 ((𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁)))
6014, 58, 59sylanbrc 408 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
6160ex 113 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
62613adant2 957 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
632, 62syl5bi 150 . . 3 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
641, 63sylbi 119 . 2 (𝐿 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
6564imp 122 1 ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981   + caddc 6984  cle 7154  cmin 7279  cz 8351  cuz 8619  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  uzsubsubfz1  9067
  Copyright terms: Public domain W3C validator