![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzsucd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 9401) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzsucd | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uzzd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
3 | zex 8360 | . . . . . . . 8 ⊢ ℤ ∈ V | |
4 | 3 | mptex 5408 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
5 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | fvex 5215 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V |
7 | 6 | ax-gen 1378 | . . . . 5 ⊢ ∀𝑦((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V |
8 | frecsuc 6014 | . . . . 5 ⊢ ((∀𝑦((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) | |
9 | 7, 8 | mp3an1 1255 | . . . 4 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) |
10 | 1, 2, 9 | syl2anc 403 | . . 3 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) |
11 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
12 | 11 | fveq1i 5199 | . . 3 ⊢ (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) |
13 | 11 | fveq1i 5199 | . . . 4 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
14 | 13 | fveq2i 5201 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)) |
15 | 10, 12, 14 | 3eqtr4g 2138 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴))) |
16 | 1, 11, 2 | frec2uzzd 9402 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
17 | oveq1 5539 | . . . 4 ⊢ (𝑧 = (𝐺‘𝐴) → (𝑧 + 1) = ((𝐺‘𝐴) + 1)) | |
18 | oveq1 5539 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
19 | 18 | cbvmptv 3873 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1)) |
20 | peano2z 8387 | . . . 4 ⊢ (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ) | |
21 | 17, 19, 20 | fvmpt3 5272 | . . 3 ⊢ ((𝐺‘𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
22 | 16, 21 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
23 | 15, 22 | eqtrd 2113 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ↦ cmpt 3839 suc csuc 4120 ωcom 4331 ‘cfv 4922 (class class class)co 5532 freccfrec 6000 1c1 6982 + caddc 6984 ℤcz 8351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-recs 5943 df-frec 6001 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
This theorem is referenced by: frec2uzuzd 9404 frec2uzltd 9405 frec2uzrand 9407 frec2uzrdg 9411 frecuzrdgsuc 9417 frecfzennn 9419 |
Copyright terms: Public domain | W3C validator |