MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2 Structured version   Visualization version   Unicode version

Theorem cxpmul2 24435
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 24434 with more general conditions on  A and  B when  C is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
cxpmul2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )

Proof of Theorem cxpmul2
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( x  =  0  ->  ( B  x.  x )  =  ( B  x.  0 ) )
21oveq2d 6666 . . . . . 6  |-  ( x  =  0  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  0 ) ) )
3 oveq2 6658 . . . . . 6  |-  ( x  =  0  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ 0 ) )
42, 3eqeq12d 2637 . . . . 5  |-  ( x  =  0  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) )
54imbi2d 330 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x ) )  <-> 
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) ) )
6 oveq2 6658 . . . . . . 7  |-  ( x  =  k  ->  ( B  x.  x )  =  ( B  x.  k ) )
76oveq2d 6666 . . . . . 6  |-  ( x  =  k  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  k ) ) )
8 oveq2 6658 . . . . . 6  |-  ( x  =  k  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ k ) )
97, 8eqeq12d 2637 . . . . 5  |-  ( x  =  k  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) ) )
109imbi2d 330 . . . 4  |-  ( x  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x ) )  <-> 
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k ) ) ) )
11 oveq2 6658 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  x.  x )  =  ( B  x.  ( k  +  1 ) ) )
1211oveq2d 6666 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  ( k  +  1 ) ) ) )
13 oveq2 6658 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) )
1412, 13eqeq12d 2637 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
1514imbi2d 330 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x ) )  <-> 
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) ) ) )
16 oveq2 6658 . . . . . . 7  |-  ( x  =  C  ->  ( B  x.  x )  =  ( B  x.  C ) )
1716oveq2d 6666 . . . . . 6  |-  ( x  =  C  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  C ) ) )
18 oveq2 6658 . . . . . 6  |-  ( x  =  C  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ C ) )
1917, 18eqeq12d 2637 . . . . 5  |-  ( x  =  C  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C
) ) )
2019imbi2d 330 . . . 4  |-  ( x  =  C  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x ) )  <-> 
( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) ) )
21 cxp0 24416 . . . . . 6  |-  ( A  e.  CC  ->  ( A  ^c  0 )  =  1 )
2221adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c 
0 )  =  1 )
23 mul01 10215 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  x.  0 )  =  0 )
2423adantl 482 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  0 )  =  0 )
2524oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c 
( B  x.  0 ) )  =  ( A  ^c  0 ) )
26 cxpcl 24420 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
2726exp0d 13002 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  ^c  B ) ^ 0 )  =  1 )
2822, 25, 273eqtr4d 2666 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c 
( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) )
29 oveq1 6657 . . . . . . 7  |-  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  ->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
30 0cn 10032 . . . . . . . . . . . . 13  |-  0  e.  CC
31 cxp0 24416 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  (
0  ^c  0 )  =  1 )
3230, 31ax-mp 5 . . . . . . . . . . . 12  |-  ( 0  ^c  0 )  =  1
33 1t1e1 11175 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
3432, 33eqtr4i 2647 . . . . . . . . . . 11  |-  ( 0  ^c  0 )  =  ( 1  x.  1 )
35 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  A  =  0 )
36 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  B  =  0 )
3736oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( 0  x.  ( k  +  1 ) ) )
38 nn0p1nn 11332 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3938adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  NN )
4039nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  CC )
4140ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( k  +  1 )  e.  CC )
4241mul02d 10234 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( 0  x.  ( k  +  1 ) )  =  0 )
4337, 42eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( B  x.  ( k  +  1 ) )  =  0 )
4435, 43oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( 0  ^c 
0 ) )
4536oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( B  x.  k )  =  ( 0  x.  k ) )
46 nn0cn 11302 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  k  e.  CC )
4746adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  k  e.  CC )
4847ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  k  e.  CC )
4948mul02d 10234 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( 0  x.  k )  =  0 )
5045, 49eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( B  x.  k )  =  0 )
5135, 50oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  ( B  x.  k ) )  =  ( 0  ^c 
0 ) )
5251, 32syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  ( B  x.  k ) )  =  1 )
5335, 36oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  B )  =  ( 0  ^c  0 ) )
5453, 32syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  B )  =  1 )
5552, 54oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( 1  x.  1 ) )
5634, 44, 553eqtr4a 2682 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
57 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  A  e.  CC )
5857ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  ->  A  e.  CC )
59 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  B  e.  CC )
6059, 47mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  k )  e.  CC )
6160ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( B  x.  k
)  e.  CC )
62 cxpcl 24420 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( B  x.  k
)  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  e.  CC )
6358, 61, 62syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c 
( B  x.  k
) )  e.  CC )
6463mul01d 10235 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( ( A  ^c  ( B  x.  k ) )  x.  0 )  =  0 )
65 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  ->  A  =  0 )
6665oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c  B )  =  ( 0  ^c  B ) )
6759ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  ->  B  e.  CC )
68 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  ->  B  =/=  0 )
69 0cxp 24412 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( 0  ^c  B )  =  0 )
7067, 68, 69syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( 0  ^c  B )  =  0 )
7166, 70eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c  B )  =  0 )
7271oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  0 ) )
7365oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( 0  ^c  ( B  x.  ( k  +  1 ) ) ) )
7440ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( k  +  1 )  e.  CC )
7567, 74mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( B  x.  (
k  +  1 ) )  e.  CC )
7639nnne0d 11065 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( k  +  1 )  =/=  0
)
7776ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( k  +  1 )  =/=  0 )
7867, 74, 68, 77mulne0d 10679 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( B  x.  (
k  +  1 ) )  =/=  0 )
79 0cxp 24412 . . . . . . . . . . . . 13  |-  ( ( ( B  x.  (
k  +  1 ) )  e.  CC  /\  ( B  x.  (
k  +  1 ) )  =/=  0 )  ->  ( 0  ^c  ( B  x.  ( k  +  1 ) ) )  =  0 )
8075, 78, 79syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( 0  ^c 
( B  x.  (
k  +  1 ) ) )  =  0 )
8173, 80eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  0 )
8264, 72, 813eqtr4rd 2667 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c 
( B  x.  k
) )  x.  ( A  ^c  B ) ) )
8356, 82pm2.61dane 2881 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =  0 )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c 
( B  x.  k
) )  x.  ( A  ^c  B ) ) )
8459adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  B  e.  CC )
8547adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  k  e.  CC )
86 1cnd 10056 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  1  e.  CC )
8784, 85, 86adddid 10064 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k )  +  ( B  x.  1 ) ) )
8884mulid1d 10057 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( B  x.  1 )  =  B )
8988oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  (
( B  x.  k
)  +  ( B  x.  1 ) )  =  ( ( B  x.  k )  +  B ) )
9087, 89eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k )  +  B ) )
9190oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( A  ^c  ( ( B  x.  k )  +  B ) ) )
9257adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  A  e.  CC )
93 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  A  =/=  0 )
9460adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( B  x.  k )  e.  CC )
95 cxpadd 24425 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  x.  k )  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
9692, 93, 94, 84, 95syl211anc 1332 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
9791, 96eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  A  =/=  0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
9883, 97pm2.61dane 2881 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
99 expp1 12867 . . . . . . . . 9  |-  ( ( ( A  ^c  B )  e.  CC  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ (
k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k
)  x.  ( A  ^c  B ) ) )
10026, 99sylan 488 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ ( k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
10198, 100eqeq12d 2637 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) )  <->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) ) )
10229, 101syl5ibr 236 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
103102expcom 451 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
)  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
104103a2d 29 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) )  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
1055, 10, 15, 20, 28, 104nn0ind 11472 . . 3  |-  ( C  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c 
( B  x.  C
) )  =  ( ( A  ^c  B ) ^ C
) ) )
106105com12 32 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( C  e.  NN0  ->  ( A  ^c 
( B  x.  C
) )  =  ( ( A  ^c  B ) ^ C
) ) )
1071063impia 1261 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   NN0cn0 11292   ^cexp 12860    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  cxproot  24436  cxpmul2z  24437  cxpmul2d  24455
  Copyright terms: Public domain W3C validator