MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1stres Structured version   Visualization version   Unicode version

Theorem fo1stres 7192
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo1stres  |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> A )

Proof of Theorem fo1stres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . . . . 7  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
2 opelxp 5146 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 fvres 6207 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  =  ( 1st `  <. x ,  y
>. ) )
4 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
5 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
64, 5op1st 7176 . . . . . . . . . . . 12  |-  ( 1st `  <. x ,  y
>. )  =  x
73, 6syl6req 2673 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. x ,  y
>. ) )
8 f1stres 7190 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
9 ffn 6045 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
108, 9ax-mp 5 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
11 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. x ,  y >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1210, 11mpan 706 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
137, 12eqeltrd 2701 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
142, 13sylbir 225 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1514expcom 451 . . . . . . . 8  |-  ( y  e.  B  ->  (
x  e.  A  ->  x  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1615exlimiv 1858 . . . . . . 7  |-  ( E. y  y  e.  B  ->  ( x  e.  A  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
171, 16sylbi 207 . . . . . 6  |-  ( B  =/=  (/)  ->  ( x  e.  A  ->  x  e. 
ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3609 . . . . 5  |-  ( B  =/=  (/)  ->  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) )
19 frn 6053 . . . . . 6  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
208, 19ax-mp 5 . . . . 5  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 560 . . . 4  |-  ( B  =/=  (/)  ->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3618 . . . 4  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 224 . . 3  |-  ( B  =/=  (/)  ->  ran  ( 1st  |`  ( A  X.  B
) )  =  A )
2423, 8jctil 560 . 2  |-  ( B  =/=  (/)  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 6119 . 2  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 224 1  |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   <.cop 4183    X. cxp 5112   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168
This theorem is referenced by:  1stconst  7265  txcmpb  21447
  Copyright terms: Public domain W3C validator