![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
anim12dan.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12dan.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12dan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 450 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | anim12dan.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ex 450 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | anim12d 586 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | imp 445 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: 2f1fvneq 6517 isocnv 6580 isocnv3 6582 f1oiso2 6602 xpexr2 7107 f1o2ndf1 7285 fnwelem 7292 omword 7650 oeword 7670 swoso 7775 xpf1o 8122 zorn2lem6 9323 ltapr 9867 ltord1 10554 pc11 15584 imasaddfnlem 16188 imasaddflem 16190 pslem 17206 mhmpropd 17341 frmdsssubm 17398 ghmsub 17668 gasubg 17735 invrpropd 18698 mplcoe5lem 19467 evlseu 19516 znfld 19909 cygznlem3 19918 cpmatmcl 20524 tgclb 20774 innei 20929 txcn 21429 txflf 21810 qustgplem 21924 clmsub4 22906 cfilresi 23093 volcn 23374 itg1addlem4 23466 dvlip 23756 plymullem1 23970 lgsdir2 25055 lgsdchr 25080 brbtwn2 25785 axcontlem7 25850 frgrncvvdeqlem8 27170 nvaddsub4 27512 hhcno 28763 hhcnf 28764 unopf1o 28775 counop 28780 afsval 30749 ontopbas 32427 onsuct0 32440 heicant 33444 ftc1anclem6 33490 anim12da 33506 equivbnd2 33591 ismtybndlem 33605 ismrer1 33637 iccbnd 33639 xihopellsmN 36543 dihopellsm 36544 dvconstbi 38533 fargshiftf1 41377 mgmhmpropd 41785 elpglem1 42454 |
Copyright terms: Public domain | W3C validator |