Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolborelfzop1 Structured version   Visualization version   Unicode version

Theorem elfzolborelfzop1 42309
Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
elfzolborelfzop1  |-  ( K  e.  ( M..^ N
)  ->  ( K  =  M  \/  K  e.  ( ( M  + 
1 )..^ N ) ) )

Proof of Theorem elfzolborelfzop1
StepHypRef Expression
1 elfzo2 12473 . 2  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )
2 eluz2 11693 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
3 zre 11381 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
4 zre 11381 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  RR )
5 leloe 10124 . . . . . . 7  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  <_  K  <->  ( M  <  K  \/  M  =  K )
) )
63, 4, 5syl2an 494 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  K  <->  ( M  <  K  \/  M  =  K )
) )
7 peano2z 11418 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
87adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  1 )  e.  ZZ )
98ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  -> 
( M  +  1 )  e.  ZZ )
10 simprlr 803 . . . . . . . . . . . . . 14  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  ->  K  e.  ZZ )
11 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  ->  M  <  K )
12 zltp1le 11427 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <  K  <->  ( M  +  1 )  <_  K ) )
1312ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  -> 
( M  <  K  <->  ( M  +  1 )  <_  K ) )
1411, 13mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  -> 
( M  +  1 )  <_  K )
159, 10, 143jca 1242 . . . . . . . . . . . . 13  |-  ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  -> 
( ( M  + 
1 )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  +  1
)  <_  K )
)
1615adantr 481 . . . . . . . . . . . 12  |-  ( ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  /\  K  <  N )  -> 
( ( M  + 
1 )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  +  1
)  <_  K )
)
17 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  /\  K  <  N )  ->  N  e.  ZZ )
18 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  /\  K  <  N )  ->  K  <  N )
19 elfzo2 12473 . . . . . . . . . . . . 13  |-  ( K  e.  ( ( M  +  1 )..^ N
)  <->  ( K  e.  ( ZZ>= `  ( M  +  1 ) )  /\  N  e.  ZZ  /\  K  <  N ) )
20 eluz2 11693 . . . . . . . . . . . . . 14  |-  ( K  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  +  1 )  <_  K ) )
21203anbi1i 1253 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  ( M  +  1
) )  /\  N  e.  ZZ  /\  K  < 
N )  <->  ( (
( M  +  1 )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  +  1 )  <_  K )  /\  N  e.  ZZ  /\  K  <  N ) )
2219, 21bitri 264 . . . . . . . . . . . 12  |-  ( K  e.  ( ( M  +  1 )..^ N
)  <->  ( ( ( M  +  1 )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  +  1 )  <_  K )  /\  N  e.  ZZ  /\  K  < 
N ) )
2316, 17, 18, 22syl3anbrc 1246 . . . . . . . . . . 11  |-  ( ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  /\  K  <  N )  ->  K  e.  ( ( M  +  1 )..^ N ) )
2423olcd 408 . . . . . . . . . 10  |-  ( ( ( M  <  K  /\  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )  /\  K  <  N )  -> 
( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) )
2524exp31 630 . . . . . . . . 9  |-  ( M  <  K  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  <  N  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) )
26 orc 400 . . . . . . . . . . 11  |-  ( K  =  M  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) )
2726eqcoms 2630 . . . . . . . . . 10  |-  ( M  =  K  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) )
28272a1d 26 . . . . . . . . 9  |-  ( M  =  K  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  <  N  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) )
2925, 28jaoi 394 . . . . . . . 8  |-  ( ( M  <  K  \/  M  =  K )  ->  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  <  N  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) )
3029expd 452 . . . . . . 7  |-  ( ( M  <  K  \/  M  =  K )  ->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( K  <  N  -> 
( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) ) )
3130com12 32 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  < 
K  \/  M  =  K )  ->  ( N  e.  ZZ  ->  ( K  <  N  -> 
( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) ) )
326, 31sylbid 230 . . . . 5  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  K  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) ) )
33323impia 1261 . . . 4  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  ( N  e.  ZZ  ->  ( K  <  N  -> 
( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) ) ) )
342, 33sylbi 207 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  ( K  =  M  \/  K  e.  ( ( M  + 
1 )..^ N ) ) ) ) )
35343imp 1256 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  < 
N )  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 )..^ N ) ) )
361, 35sylbi 207 1  |-  ( K  e.  ( M..^ N
)  ->  ( K  =  M  \/  K  e.  ( ( M  + 
1 )..^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  nnpw2blenfzo2  42376
  Copyright terms: Public domain W3C validator