MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzindOLD Structured version   Visualization version   Unicode version

Theorem brfi1uzindOLD 13286
Description: Obsolete version of brfi1uzind 13280 as of 28-Mar-2021. (Contributed by AV, 7-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
brfi1uzindOLD.r  |-  Rel  G
brfi1uzindOLD.f  |-  F  e.  U
brfi1uzindOLD.l  |-  L  e. 
NN0
brfi1uzindOLD.1  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
brfi1uzindOLD.2  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
brfi1uzindOLD.3  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
brfi1uzindOLD.4  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
brfi1uzindOLD.base  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
brfi1uzindOLD.step  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
Assertion
Ref Expression
brfi1uzindOLD  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Distinct variable groups:    e, E, n, v    f, F, w   
e, G, f, n, v, w, y    e, L, n, v, y    e, V, n, v    ps, f, n, w, y    th, e, n, v    ch, f, w    ph, e, n, v
Allowed substitution hints:    ph( y, w, f)    ps( v, e)    ch( y, v, e, n)    th( y, w, f)    U( y, w, v, e, f, n)    E( y, w, f)    F( y, v, e, n)    L( w, f)    V( y, w, f)

Proof of Theorem brfi1uzindOLD
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzindOLD.r . . . 4  |-  Rel  G
2 brrelex12 5155 . . . 4  |-  ( ( Rel  G  /\  V G E )  ->  ( V  e.  _V  /\  E  e.  _V ) )
31, 2mpan 706 . . 3  |-  ( V G E  ->  ( V  e.  _V  /\  E  e.  _V ) )
4 simpl 473 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  V  e.  _V )
5 simplr 792 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  a  =  V
)  ->  E  e.  _V )
6 breq12 4658 . . . . . . 7  |-  ( ( a  =  V  /\  b  =  E )  ->  ( a G b  <-> 
V G E ) )
76adantll 750 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  a  =  V )  /\  b  =  E )  ->  (
a G b  <->  V G E ) )
85, 7sbcied 3472 . . . . 5  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  a  =  V
)  ->  ( [. E  /  b ]. a G b  <->  V G E ) )
94, 8sbcied 3472 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( [. V  / 
a ]. [. E  / 
b ]. a G b  <-> 
V G E ) )
109biimprcd 240 . . 3  |-  ( V G E  ->  (
( V  e.  _V  /\  E  e.  _V )  ->  [. V  /  a ]. [. E  /  b ]. a G b ) )
113, 10mpd 15 . 2  |-  ( V G E  ->  [. V  /  a ]. [. E  /  b ]. a G b )
12 brfi1uzindOLD.f . . 3  |-  F  e.  U
13 brfi1uzindOLD.l . . 3  |-  L  e. 
NN0
14 brfi1uzindOLD.1 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
15 brfi1uzindOLD.2 . . 3  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
16 vex 3203 . . . . 5  |-  v  e. 
_V
17 vex 3203 . . . . 5  |-  e  e. 
_V
18 breq12 4658 . . . . 5  |-  ( ( a  =  v  /\  b  =  e )  ->  ( a G b  <-> 
v G e ) )
1916, 17, 18sbc2ie 3505 . . . 4  |-  ( [. v  /  a ]. [. e  /  b ]. a G b  <->  v G
e )
20 brfi1uzindOLD.3 . . . . 5  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
21 difexg 4808 . . . . . . 7  |-  ( v  e.  _V  ->  (
v  \  { n } )  e.  _V )
2216, 21ax-mp 5 . . . . . 6  |-  ( v 
\  { n }
)  e.  _V
2312elexi 3213 . . . . . 6  |-  F  e. 
_V
24 breq12 4658 . . . . . 6  |-  ( ( a  =  ( v 
\  { n }
)  /\  b  =  F )  ->  (
a G b  <->  ( v  \  { n } ) G F ) )
2522, 23, 24sbc2ie 3505 . . . . 5  |-  ( [. ( v  \  {
n } )  / 
a ]. [. F  / 
b ]. a G b  <-> 
( v  \  {
n } ) G F )
2620, 25sylibr 224 . . . 4  |-  ( ( v G e  /\  n  e.  v )  ->  [. ( v  \  { n } )  /  a ]. [. F  /  b ]. a G b )
2719, 26sylanb 489 . . 3  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  n  e.  v )  ->  [. ( v  \  { n } )  /  a ]. [. F  /  b ]. a G b )
28 brfi1uzindOLD.4 . . 3  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
29 brfi1uzindOLD.base . . . 4  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
3019, 29sylanb 489 . . 3  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  L )  ->  ps )
31193anbi1i 1253 . . . . 5  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v )  <->  ( v G e  /\  ( # `
 v )  =  ( y  +  1 )  /\  n  e.  v ) )
3231anbi2i 730 . . . 4  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( [. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v ) )  <->  ( (
y  +  1 )  e.  NN0  /\  (
v G e  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v ) ) )
33 brfi1uzindOLD.step . . . 4  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
3432, 33sylanb 489 . . 3  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( [. v  / 
a ]. [. e  / 
b ]. a G b  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
3512, 13, 14, 15, 27, 28, 30, 34fi1uzindOLD 13285 . 2  |-  ( (
[. V  /  a ]. [. E  /  b ]. a G b  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
3611, 35syl3an1 1359 1  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    \ cdif 3571   {csn 4177   class class class wbr 4653   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    + caddc 9939    <_ cle 10075   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  brfi1indOLD  13287
  Copyright terms: Public domain W3C validator