MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Visualization version   Unicode version

Theorem brfi1uzind 13280
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with  L  =  0 (see brfi1ind 13281) or  L  =  1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1uzind.r  |-  Rel  G
brfi1uzind.f  |-  F  e. 
_V
brfi1uzind.l  |-  L  e. 
NN0
brfi1uzind.1  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
brfi1uzind.2  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
brfi1uzind.3  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
brfi1uzind.4  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
brfi1uzind.base  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
brfi1uzind.step  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
Assertion
Ref Expression
brfi1uzind  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Distinct variable groups:    e, E, n, v    f, F, w   
e, G, f, n, v, w, y    e, L, n, v, y    e, V, n, v    ps, f, n, w, y    th, e, n, v    ch, f, w    ph, e, n, v
Allowed substitution hints:    ph( y, w, f)    ps( v, e)    ch( y, v, e, n)    th( y, w, f)    E( y, w, f)    F( y, v, e, n)    L( w, f)    V( y, w, f)

Proof of Theorem brfi1uzind
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzind.r . . . 4  |-  Rel  G
2 brrelex12 5155 . . . 4  |-  ( ( Rel  G  /\  V G E )  ->  ( V  e.  _V  /\  E  e.  _V ) )
31, 2mpan 706 . . 3  |-  ( V G E  ->  ( V  e.  _V  /\  E  e.  _V ) )
4 simpl 473 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  V  e.  _V )
5 simplr 792 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  a  =  V
)  ->  E  e.  _V )
6 breq12 4658 . . . . . . 7  |-  ( ( a  =  V  /\  b  =  E )  ->  ( a G b  <-> 
V G E ) )
76adantll 750 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  a  =  V )  /\  b  =  E )  ->  (
a G b  <->  V G E ) )
85, 7sbcied 3472 . . . . 5  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  a  =  V
)  ->  ( [. E  /  b ]. a G b  <->  V G E ) )
94, 8sbcied 3472 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( [. V  / 
a ]. [. E  / 
b ]. a G b  <-> 
V G E ) )
109biimprcd 240 . . 3  |-  ( V G E  ->  (
( V  e.  _V  /\  E  e.  _V )  ->  [. V  /  a ]. [. E  /  b ]. a G b ) )
113, 10mpd 15 . 2  |-  ( V G E  ->  [. V  /  a ]. [. E  /  b ]. a G b )
12 brfi1uzind.f . . 3  |-  F  e. 
_V
13 brfi1uzind.l . . 3  |-  L  e. 
NN0
14 brfi1uzind.1 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
15 brfi1uzind.2 . . 3  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
16 vex 3203 . . . . 5  |-  v  e. 
_V
17 vex 3203 . . . . 5  |-  e  e. 
_V
18 breq12 4658 . . . . 5  |-  ( ( a  =  v  /\  b  =  e )  ->  ( a G b  <-> 
v G e ) )
1916, 17, 18sbc2ie 3505 . . . 4  |-  ( [. v  /  a ]. [. e  /  b ]. a G b  <->  v G
e )
20 brfi1uzind.3 . . . . 5  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
21 difexg 4808 . . . . . . 7  |-  ( v  e.  _V  ->  (
v  \  { n } )  e.  _V )
2216, 21ax-mp 5 . . . . . 6  |-  ( v 
\  { n }
)  e.  _V
2312elexi 3213 . . . . . 6  |-  F  e. 
_V
24 breq12 4658 . . . . . 6  |-  ( ( a  =  ( v 
\  { n }
)  /\  b  =  F )  ->  (
a G b  <->  ( v  \  { n } ) G F ) )
2522, 23, 24sbc2ie 3505 . . . . 5  |-  ( [. ( v  \  {
n } )  / 
a ]. [. F  / 
b ]. a G b  <-> 
( v  \  {
n } ) G F )
2620, 25sylibr 224 . . . 4  |-  ( ( v G e  /\  n  e.  v )  ->  [. ( v  \  { n } )  /  a ]. [. F  /  b ]. a G b )
2719, 26sylanb 489 . . 3  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  n  e.  v )  ->  [. ( v  \  { n } )  /  a ]. [. F  /  b ]. a G b )
28 brfi1uzind.4 . . 3  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
29 brfi1uzind.base . . . 4  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
3019, 29sylanb 489 . . 3  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  L )  ->  ps )
31193anbi1i 1253 . . . . 5  |-  ( (
[. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v )  <->  ( v G e  /\  ( # `
 v )  =  ( y  +  1 )  /\  n  e.  v ) )
3231anbi2i 730 . . . 4  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( [. v  /  a ]. [. e  /  b ]. a G b  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v ) )  <->  ( (
y  +  1 )  e.  NN0  /\  (
v G e  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v ) ) )
33 brfi1uzind.step . . . 4  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
3432, 33sylanb 489 . . 3  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( [. v  / 
a ]. [. e  / 
b ]. a G b  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
3512, 13, 14, 15, 27, 28, 30, 34fi1uzind 13279 . 2  |-  ( (
[. V  /  a ]. [. E  /  b ]. a G b  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
3611, 35syl3an1 1359 1  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    \ cdif 3571   {csn 4177   class class class wbr 4653   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    + caddc 9939    <_ cle 10075   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  brfi1ind  13281
  Copyright terms: Public domain W3C validator