Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3OLDN Structured version   Visualization version   Unicode version

Theorem 3dimlem3OLDN 34748
Description: Lemma for 3dim1 34753. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem3OLDN  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  R ) ) )

Proof of Theorem 3dimlem3OLDN
StepHypRef Expression
1 simpr1 1067 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  =/=  Q )
2 simpr2 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  P  .<_  ( Q  .\/  R ) )
3 simpl11 1136 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  K  e.  HL )
4 simpl2l 1114 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  e.  A )
5 simpl12 1137 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  e.  A )
6 simpl13 1138 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  e.  A )
7 simpl3l 1116 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  =/=  R )
87necomd 2849 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  =/=  Q )
9 3dim0.l . . . . . 6  |-  .<_  =  ( le `  K )
10 3dim0.j . . . . . 6  |-  .\/  =  ( join `  K )
11 3dim0.a . . . . . 6  |-  A  =  ( Atoms `  K )
129, 10, 11hlatexch2 34682 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  R  =/=  Q )  ->  ( R  .<_  ( P  .\/  Q
)  ->  P  .<_  ( R  .\/  Q ) ) )
133, 4, 5, 6, 8, 12syl131anc 1339 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( R  .\/  Q ) ) )
1410, 11hlatjcom 34654 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  =  ( R 
.\/  Q ) )
153, 6, 4, 14syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( Q  .\/  R )  =  ( R  .\/  Q
) )
1615breq2d 4665 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  .<_  ( Q  .\/  R )  <->  P  .<_  ( R 
.\/  Q ) ) )
1713, 16sylibrd 249 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
182, 17mtod 189 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  R  .<_  ( P  .\/  Q ) )
19 simpl3r 1117 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  T  .<_  ( ( Q 
.\/  R )  .\/  S ) )
20 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
213, 20syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  K  e.  Lat )
22 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2322, 11atbase 34576 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
246, 23syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  e.  ( Base `  K
) )
2522, 11atbase 34576 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
264, 25syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  e.  ( Base `  K
) )
2722, 11atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
285, 27syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  e.  ( Base `  K
) )
2922, 10latjrot 17100 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) ) )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3021, 24, 26, 28, 29syl13anc 1328 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
31 simpr3 1069 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  .<_  ( ( Q  .\/  R )  .\/  S ) )
32 simpl2r 1115 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  S  e.  A )
3322, 10, 11hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
343, 6, 4, 33syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
3522, 9, 10, 11hlexchb1 34670 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  ( Q  .\/  R
)  e.  ( Base `  K ) )  /\  -.  P  .<_  ( Q 
.\/  R ) )  ->  ( P  .<_  ( ( Q  .\/  R
)  .\/  S )  <->  ( ( Q  .\/  R
)  .\/  P )  =  ( ( Q 
.\/  R )  .\/  S ) ) )
363, 5, 32, 34, 2, 35syl131anc 1339 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  .<_  ( ( Q 
.\/  R )  .\/  S )  <->  ( ( Q 
.\/  R )  .\/  P )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )
3731, 36mpbid 222 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( Q 
.\/  R )  .\/  S ) )
3830, 37eqtr3d 2658 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( Q 
.\/  R )  .\/  S ) )
3938breq2d 4665 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( T  .<_  ( ( P 
.\/  Q )  .\/  R )  <->  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )
4019, 39mtbird 315 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  T  .<_  ( ( P 
.\/  Q )  .\/  R ) )
411, 18, 403jca 1242 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator