Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Structured version   Visualization version   Unicode version

Theorem 4atexlemswapqr 35349
Description: Lemma for 4atexlem7 35361. Swap  Q and  R, so that theorems involving  C can be reused for  D. Note that  U must be expanded because it involves  Q. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
4thatlemslps.l  |-  .<_  =  ( le `  K )
4thatlemslps.j  |-  .\/  =  ( join `  K )
4thatlemslps.a  |-  A  =  ( Atoms `  K )
4thatlemsw.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
4atexlemswapqr  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
2 simp11 1091 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
31, 2sylbi 207 . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
414atexlempw 35335 . . 3  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
5 simp22 1095 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) )
6 3simpa 1058 . . . . 5  |-  ( ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
75, 6syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
81, 7sylbi 207 . . 3  |-  ( ph  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
93, 4, 83jca 1242 . 2  |-  ( ph  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
1014atexlems 35338 . . 3  |-  ( ph  ->  S  e.  A )
1114atexlemq 35337 . . . 4  |-  ( ph  ->  Q  e.  A )
12 simp13r 1177 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  W )
131, 12sylbi 207 . . . 4  |-  ( ph  ->  -.  Q  .<_  W )
1414atexlemkc 35344 . . . . 5  |-  ( ph  ->  K  e.  CvLat )
1514atexlemp 35336 . . . . 5  |-  ( ph  ->  P  e.  A )
168simpld 475 . . . . 5  |-  ( ph  ->  R  e.  A )
1714atexlempnq 35341 . . . . 5  |-  ( ph  ->  P  =/=  Q )
18 simp223 1204 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) )
191, 18sylbi 207 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( Q 
.\/  R ) )
20 4thatlemslps.a . . . . . 6  |-  A  =  ( Atoms `  K )
21 4thatlemslps.j . . . . . 6  |-  .\/  =  ( join `  K )
2220, 21cvlsupr7 34635 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  Q ) )
2314, 15, 11, 16, 17, 19, 22syl132anc 1344 . . . 4  |-  ( ph  ->  ( P  .\/  Q
)  =  ( R 
.\/  Q ) )
2411, 13, 233jca 1242 . . 3  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) ) )
2514atexlemt 35339 . . . 4  |-  ( ph  ->  T  e.  A )
26 4thatlemsw.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2720, 21cvlsupr8 34636 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
2814, 15, 11, 16, 17, 19, 27syl132anc 1344 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  Q
)  =  ( P 
.\/  R ) )
2928oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
3026, 29syl5eq 2668 . . . . . 6  |-  ( ph  ->  U  =  ( ( P  .\/  R ) 
./\  W ) )
3130oveq1d 6665 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( ( ( P  .\/  R
)  ./\  W )  .\/  T ) )
3214atexlemutvt 35340 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( V 
.\/  T ) )
3331, 32eqtr3d 2658 . . . 4  |-  ( ph  ->  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) )
3425, 33jca 554 . . 3  |-  ( ph  ->  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )
3510, 24, 343jca 1242 . 2  |-  ( ph  ->  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) ) )
3620, 21cvlsupr5 34633 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  =/=  P )
3736necomd 2849 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  P  =/=  R )
3814, 15, 11, 16, 17, 19, 37syl132anc 1344 . . 3  |-  ( ph  ->  P  =/=  R )
3914atexlemnslpq 35342 . . . 4  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  Q ) )
4028eqcomd 2628 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( P 
.\/  Q ) )
4140breq2d 4665 . . . 4  |-  ( ph  ->  ( S  .<_  ( P 
.\/  R )  <->  S  .<_  ( P  .\/  Q ) ) )
4239, 41mtbird 315 . . 3  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  R ) )
4338, 42jca 554 . 2  |-  ( ph  ->  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) )
449, 35, 433jca 1242 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550   CvLatclc 34552   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  4atexlemex4  35359
  Copyright terms: Public domain W3C validator