![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version Unicode version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grplid.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grplid.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grplid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17429 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | grpbn0.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | grplid.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | grplid.o |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mndlid 17311 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | sylan 488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
This theorem is referenced by: grprcan 17455 grpid 17457 isgrpid2 17458 grprinv 17469 grpinvid1 17470 grpinvid2 17471 grpidinv2 17474 grpinvid 17476 grplcan 17477 grpasscan1 17478 grpidlcan 17481 grplmulf1o 17489 grpidssd 17491 grpinvadd 17493 grpinvval2 17498 grplactcnv 17518 imasgrp 17531 mulgaddcom 17564 mulgdirlem 17572 subg0 17600 issubg2 17609 issubg4 17613 0subg 17619 isnsg3 17628 nmzsubg 17635 ssnmz 17636 eqger 17644 eqgid 17646 qusgrp 17649 qus0 17652 ghmid 17666 conjghm 17691 conjnmz 17694 subgga 17733 cntzsubg 17769 sylow1lem2 18014 sylow2blem2 18036 sylow2blem3 18037 sylow3lem1 18042 lsmmod 18088 lsmdisj2 18095 pj1rid 18115 abladdsub4 18219 ablpncan2 18221 ablpnpcan 18225 ablnncan 18226 odadd1 18251 odadd2 18252 oddvdssubg 18258 dprdfadd 18419 pgpfac1lem3a 18475 ringlz 18587 ringrz 18588 isabvd 18820 lmod0vlid 18893 lmod0vs 18896 psr0lid 19395 mplsubglem 19434 mplcoe1 19465 evpmodpmf1o 19942 ocvlss 20016 lsmcss 20036 mdetunilem6 20423 mdetunilem9 20426 ghmcnp 21918 tgpt0 21922 qustgpopn 21923 mdegaddle 23834 ply1rem 23923 ogrpinvOLD 29715 ogrpinv0le 29716 ogrpaddltrbid 29721 ogrpinv0lt 29723 ogrpinvlt 29724 isarchi3 29741 archirngz 29743 archiabllem1b 29746 orngsqr 29804 ornglmulle 29805 orngrmulle 29806 ofldchr 29814 matunitlindflem1 33405 lfl0f 34356 lfladd0l 34361 lkrlss 34382 lkrin 34451 dvhgrp 36396 baerlem3lem1 36996 mapdh6bN 37026 hdmap1l6b 37101 hdmapinvlem3 37212 hdmapinvlem4 37213 hdmapglem7b 37220 rnglz 41884 |
Copyright terms: Public domain | W3C validator |