| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version Unicode version | ||
| Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| aspval2.a |
|
| aspval2.c |
|
| aspval2.r |
|
| aspval2.v |
|
| Ref | Expression |
|---|---|
| aspval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3796 |
. . . . . . . . 9
| |
| 2 | 1 | anbi1i 731 |
. . . . . . . 8
|
| 3 | anass 681 |
. . . . . . . 8
| |
| 4 | 2, 3 | bitri 264 |
. . . . . . 7
|
| 5 | aspval2.c |
. . . . . . . . . . 11
| |
| 6 | eqid 2622 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | issubassa2 19345 |
. . . . . . . . . 10
|
| 8 | 7 | anbi1d 741 |
. . . . . . . . 9
|
| 9 | unss 3787 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl6bb 276 |
. . . . . . . 8
|
| 11 | 10 | pm5.32da 673 |
. . . . . . 7
|
| 12 | 4, 11 | syl5bb 272 |
. . . . . 6
|
| 13 | 12 | abbidv 2741 |
. . . . 5
|
| 14 | 13 | adantr 481 |
. . . 4
|
| 15 | df-rab 2921 |
. . . 4
| |
| 16 | df-rab 2921 |
. . . 4
| |
| 17 | 14, 15, 16 | 3eqtr4g 2681 |
. . 3
|
| 18 | 17 | inteqd 4480 |
. 2
|
| 19 | aspval2.a |
. . 3
| |
| 20 | aspval2.v |
. . 3
| |
| 21 | 19, 20, 6 | aspval 19328 |
. 2
|
| 22 | assaring 19320 |
. . . . 5
| |
| 23 | 20 | subrgmre 18804 |
. . . . 5
|
| 24 | 22, 23 | syl 17 |
. . . 4
|
| 25 | 24 | adantr 481 |
. . 3
|
| 26 | eqid 2622 |
. . . . . . 7
| |
| 27 | assalmod 19319 |
. . . . . . 7
| |
| 28 | eqid 2622 |
. . . . . . 7
| |
| 29 | 5, 26, 22, 27, 28, 20 | asclf 19337 |
. . . . . 6
|
| 30 | frn 6053 |
. . . . . 6
| |
| 31 | 29, 30 | syl 17 |
. . . . 5
|
| 32 | 31 | adantr 481 |
. . . 4
|
| 33 | simpr 477 |
. . . 4
| |
| 34 | 32, 33 | unssd 3789 |
. . 3
|
| 35 | aspval2.r |
. . . 4
| |
| 36 | 35 | mrcval 16270 |
. . 3
|
| 37 | 25, 34, 36 | syl2anc 693 |
. 2
|
| 38 | 18, 21, 37 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mre 16246 df-mrc 16247 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-mgp 18490 df-ur 18502 df-ring 18549 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-assa 19312 df-asp 19313 df-ascl 19314 |
| This theorem is referenced by: evlseu 19516 |
| Copyright terms: Public domain | W3C validator |