MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   Unicode version

Theorem aspval2 19347
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a  |-  A  =  (AlgSpan `  W )
aspval2.c  |-  C  =  (algSc `  W )
aspval2.r  |-  R  =  (mrCls `  (SubRing `  W
) )
aspval2.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
aspval2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )

Proof of Theorem aspval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . . . . 9  |-  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  <->  ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `
 W ) ) )
21anbi1i 731 . . . . . . . 8  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( ( x  e.  (SubRing `  W
)  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
) )
3 anass 681 . . . . . . . 8  |-  ( ( ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
42, 3bitri 264 . . . . . . 7  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
5 aspval2.c . . . . . . . . . . 11  |-  C  =  (algSc `  W )
6 eqid 2622 . . . . . . . . . . 11  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
75, 6issubassa2 19345 . . . . . . . . . 10  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( x  e.  ( LSubSp `  W )  <->  ran 
C  C_  x )
)
87anbi1d 741 . . . . . . . . 9  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C 
C_  x  /\  S  C_  x ) ) )
9 unss 3787 . . . . . . . . 9  |-  ( ( ran  C  C_  x  /\  S  C_  x )  <-> 
( ran  C  u.  S )  C_  x
)
108, 9syl6bb 276 . . . . . . . 8  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C  u.  S )  C_  x ) )
1110pm5.32da 673 . . . . . . 7  |-  ( W  e. AssAlg  ->  ( ( x  e.  (SubRing `  W
)  /\  ( x  e.  ( LSubSp `  W )  /\  S  C_  x ) )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
124, 11syl5bb 272 . . . . . 6  |-  ( W  e. AssAlg  ->  ( ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
1312abbidv 2741 . . . . 5  |-  ( W  e. AssAlg  ->  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `  W )
)  /\  S  C_  x
) }  =  {
x  |  ( x  e.  (SubRing `  W
)  /\  ( ran  C  u.  S )  C_  x ) } )
1413adantr 481 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  |  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x ) }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S ) 
C_  x ) } )
15 df-rab 2921 . . . 4  |-  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
) }
16 df-rab 2921 . . . 4  |-  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) }
1714, 15, 163eqtr4g 2681 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
1817inteqd 4480 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
19 aspval2.a . . 3  |-  A  =  (AlgSpan `  W )
20 aspval2.v . . 3  |-  V  =  ( Base `  W
)
2119, 20, 6aspval 19328 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }
)
22 assaring 19320 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  Ring )
2320subrgmre 18804 . . . . 5  |-  ( W  e.  Ring  ->  (SubRing `  W
)  e.  (Moore `  V ) )
2422, 23syl 17 . . . 4  |-  ( W  e. AssAlg  ->  (SubRing `  W )  e.  (Moore `  V )
)
2524adantr 481 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (SubRing `  W )  e.  (Moore `  V ) )
26 eqid 2622 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
27 assalmod 19319 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
28 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
295, 26, 22, 27, 28, 20asclf 19337 . . . . . 6  |-  ( W  e. AssAlg  ->  C : (
Base `  (Scalar `  W
) ) --> V )
30 frn 6053 . . . . . 6  |-  ( C : ( Base `  (Scalar `  W ) ) --> V  ->  ran  C  C_  V
)
3129, 30syl 17 . . . . 5  |-  ( W  e. AssAlg  ->  ran  C  C_  V
)
3231adantr 481 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ran  C 
C_  V )
33 simpr 477 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
3432, 33unssd 3789 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( ran  C  u.  S ) 
C_  V )
35 aspval2.r . . . 4  |-  R  =  (mrCls `  (SubRing `  W
) )
3635mrcval 16270 . . 3  |-  ( ( (SubRing `  W )  e.  (Moore `  V )  /\  ( ran  C  u.  S )  C_  V
)  ->  ( R `  ( ran  C  u.  S ) )  = 
|^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
3725, 34, 36syl2anc 693 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( R `  ( ran  C  u.  S ) )  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
3818, 21, 373eqtr4d 2666 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   |^|cint 4475   ran crn 5115   -->wf 5884   ` cfv 5888   Basecbs 15857  Scalarcsca 15944  Moorecmre 16242  mrClscmrc 16243   Ringcrg 18547  SubRingcsubrg 18776   LSubSpclss 18932  AssAlgcasa 19309  AlgSpancasp 19310  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mre 16246  df-mrc 16247  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314
This theorem is referenced by:  evlseu  19516
  Copyright terms: Public domain W3C validator