MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   Unicode version

Theorem issubassa2 19345
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a  |-  A  =  (algSc `  W )
issubassa2.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
issubassa2  |-  ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  ->  ( S  e.  L  <->  ran  A  C_  S
) )

Proof of Theorem issubassa2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5  |-  A  =  (algSc `  W )
2 eqid 2622 . . . . 5  |-  ( 1r
`  W )  =  ( 1r `  W
)
3 eqid 2622 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
41, 2, 3rnascl 19343 . . . 4  |-  ( W  e. AssAlg  ->  ran  A  =  ( ( LSpan `  W
) `  { ( 1r `  W ) } ) )
54ad2antrr 762 . . 3  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  ran  A  =  ( ( LSpan `  W ) `  {
( 1r `  W
) } ) )
6 issubassa2.l . . . 4  |-  L  =  ( LSubSp `  W )
7 assalmod 19319 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  LMod )
87ad2antrr 762 . . . 4  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  W  e.  LMod )
9 simpr 477 . . . 4  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  S  e.  L )
102subrg1cl 18788 . . . . 5  |-  ( S  e.  (SubRing `  W
)  ->  ( 1r `  W )  e.  S
)
1110ad2antlr 763 . . . 4  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  ( 1r `  W )  e.  S )
126, 3, 8, 9, 11lspsnel5a 18996 . . 3  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  (
( LSpan `  W ) `  { ( 1r `  W ) } ) 
C_  S )
135, 12eqsstrd 3639 . 2  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  S  e.  L )  ->  ran  A 
C_  S )
14 subrgsubg 18786 . . . 4  |-  ( S  e.  (SubRing `  W
)  ->  S  e.  (SubGrp `  W ) )
1514ad2antlr 763 . . 3  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  S  e.  (SubGrp `  W )
)
16 simplll 798 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  ->  W  e. AssAlg )
17 simprl 794 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
18 eqid 2622 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
1918subrgss 18781 . . . . . . . . 9  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
2019ad2antlr 763 . . . . . . . 8  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  S  C_  ( Base `  W
) )
2120sselda 3603 . . . . . . 7  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  y  e.  S
)  ->  y  e.  ( Base `  W )
)
2221adantrl 752 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
y  e.  ( Base `  W ) )
23 eqid 2622 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
24 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
25 eqid 2622 . . . . . . 7  |-  ( .r
`  W )  =  ( .r `  W
)
26 eqid 2622 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
271, 23, 24, 18, 25, 26asclmul1 19339 . . . . . 6  |-  ( ( W  e. AssAlg  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( Base `  W ) )  -> 
( ( A `  x ) ( .r
`  W ) y )  =  ( x ( .s `  W
) y ) )
2816, 17, 22, 27syl3anc 1326 . . . . 5  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
( ( A `  x ) ( .r
`  W ) y )  =  ( x ( .s `  W
) y ) )
29 simpllr 799 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  ->  S  e.  (SubRing `  W
) )
30 simplr 792 . . . . . . . 8  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  x  e.  ( Base `  (Scalar `  W
) ) )  ->  ran  A  C_  S )
311, 23, 24asclfn 19336 . . . . . . . . . 10  |-  A  Fn  ( Base `  (Scalar `  W
) )
3231a1i 11 . . . . . . . . 9  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  A  Fn  ( Base `  (Scalar `  W ) ) )
33 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( A  Fn  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  (Scalar `  W
) ) )  -> 
( A `  x
)  e.  ran  A
)
3432, 33sylan 488 . . . . . . . 8  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  x  e.  ( Base `  (Scalar `  W
) ) )  -> 
( A `  x
)  e.  ran  A
)
3530, 34sseldd 3604 . . . . . . 7  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  x  e.  ( Base `  (Scalar `  W
) ) )  -> 
( A `  x
)  e.  S )
3635adantrr 753 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
( A `  x
)  e.  S )
37 simprr 796 . . . . . 6  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
y  e.  S )
3825subrgmcl 18792 . . . . . 6  |-  ( ( S  e.  (SubRing `  W
)  /\  ( A `  x )  e.  S  /\  y  e.  S
)  ->  ( ( A `  x )
( .r `  W
) y )  e.  S )
3929, 36, 37, 38syl3anc 1326 . . . . 5  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
( ( A `  x ) ( .r
`  W ) y )  e.  S )
4028, 39eqeltrrd 2702 . . . 4  |-  ( ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W ) )  /\  ran  A  C_  S )  /\  ( x  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  S ) )  -> 
( x ( .s
`  W ) y )  e.  S )
4140ralrimivva 2971 . . 3  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  A. x  e.  ( Base `  (Scalar `  W ) ) A. y  e.  S  (
x ( .s `  W ) y )  e.  S )
4223, 24, 18, 26, 6islss4 18962 . . . . 5  |-  ( W  e.  LMod  ->  ( S  e.  L  <->  ( S  e.  (SubGrp `  W )  /\  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  S  ( x
( .s `  W
) y )  e.  S ) ) )
437, 42syl 17 . . . 4  |-  ( W  e. AssAlg  ->  ( S  e.  L  <->  ( S  e.  (SubGrp `  W )  /\  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  S  ( x
( .s `  W
) y )  e.  S ) ) )
4443ad2antrr 762 . . 3  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  ( S  e.  L  <->  ( S  e.  (SubGrp `  W )  /\  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  S  ( x
( .s `  W
) y )  e.  S ) ) )
4515, 41, 44mpbir2and 957 . 2  |-  ( ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  /\  ran  A  C_  S )  ->  S  e.  L )
4613, 45impbida 877 1  |-  ( ( W  e. AssAlg  /\  S  e.  (SubRing `  W )
)  ->  ( S  e.  L  <->  ran  A  C_  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   ran crn 5115    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588   1rcur 18501  SubRingcsubrg 18776   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971  AssAlgcasa 19309  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-ascl 19314
This theorem is referenced by:  aspval2  19347
  Copyright terms: Public domain W3C validator