| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltxrlt | Structured version Visualization version Unicode version | ||
| Description: The standard less-than
|
| Ref | Expression |
|---|---|
| ltxrlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brun 4703 |
. . . . 5
| |
| 2 | brxp 5147 |
. . . . . . 7
| |
| 3 | elsni 4194 |
. . . . . . . . 9
| |
| 4 | pnfnre 10081 |
. . . . . . . . . . 11
| |
| 5 | 4 | neli 2899 |
. . . . . . . . . 10
|
| 6 | simpr 477 |
. . . . . . . . . . 11
| |
| 7 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl5ib 234 |
. . . . . . . . . 10
|
| 9 | 5, 8 | mtoi 190 |
. . . . . . . . 9
|
| 10 | 3, 9 | syl 17 |
. . . . . . . 8
|
| 11 | 10 | adantl 482 |
. . . . . . 7
|
| 12 | 2, 11 | sylbi 207 |
. . . . . 6
|
| 13 | brxp 5147 |
. . . . . . 7
| |
| 14 | elsni 4194 |
. . . . . . . . 9
| |
| 15 | mnfnre 10082 |
. . . . . . . . . . 11
| |
| 16 | 15 | neli 2899 |
. . . . . . . . . 10
|
| 17 | simpl 473 |
. . . . . . . . . . 11
| |
| 18 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | syl5ib 234 |
. . . . . . . . . 10
|
| 20 | 16, 19 | mtoi 190 |
. . . . . . . . 9
|
| 21 | 14, 20 | syl 17 |
. . . . . . . 8
|
| 22 | 21 | adantr 481 |
. . . . . . 7
|
| 23 | 13, 22 | sylbi 207 |
. . . . . 6
|
| 24 | 12, 23 | jaoi 394 |
. . . . 5
|
| 25 | 1, 24 | sylbi 207 |
. . . 4
|
| 26 | 25 | con2i 134 |
. . 3
|
| 27 | biimt 350 |
. . . 4
| |
| 28 | df-ltxr 10079 |
. . . . . . 7
| |
| 29 | 28 | equncomi 3759 |
. . . . . 6
|
| 30 | 29 | breqi 4659 |
. . . . 5
|
| 31 | brun 4703 |
. . . . 5
| |
| 32 | df-or 385 |
. . . . 5
| |
| 33 | 30, 31, 32 | 3bitri 286 |
. . . 4
|
| 34 | 27, 33 | syl6rbbr 279 |
. . 3
|
| 35 | 26, 34 | syl 17 |
. 2
|
| 36 | breq12 4658 |
. . . 4
| |
| 37 | df-3an 1039 |
. . . . 5
| |
| 38 | 37 | opabbii 4717 |
. . . 4
|
| 39 | 36, 38 | brab2a 5194 |
. . 3
|
| 40 | 39 | baibr 945 |
. 2
|
| 41 | 35, 40 | bitr4d 271 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 |
| This theorem is referenced by: axlttri 10109 axlttrn 10110 axltadd 10111 axmulgt0 10112 axsup 10113 |
| Copyright terms: Public domain | W3C validator |