MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Visualization version   Unicode version

Theorem bcthlem2 23122
Description: Lemma for bcth 23126. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem.7  |-  ( ph  ->  R  e.  RR+ )
bcthlem.8  |-  ( ph  ->  C  e.  X )
bcthlem.9  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
bcthlem.10  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
bcthlem.11  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
Assertion
Ref Expression
bcthlem2  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
Distinct variable groups:    k, n, r, x, z    C, r, x    g, k, n, r, x, z, D   
g, F, k, n, r, x, z    g, J, k, n, r, x, z    g, M, k, n, r, x, z    ph, k, n, r, x, z    x, R    g, X, k, n, r, x, z
Allowed substitution hints:    ph( g)    C( z, g, k, n)    R( z, g, k, n, r)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
2 oveq1 6657 . . . . . . . 8  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
32fveq2d 6195 . . . . . . 7  |-  ( k  =  n  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( n  +  1
) ) )
4 id 22 . . . . . . . 8  |-  ( k  =  n  ->  k  =  n )
5 fveq2 6191 . . . . . . . 8  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
64, 5oveq12d 6668 . . . . . . 7  |-  ( k  =  n  ->  (
k F ( g `
 k ) )  =  ( n F ( g `  n
) ) )
73, 6eleq12d 2695 . . . . . 6  |-  ( k  =  n  ->  (
( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  <->  ( g `  ( n  +  1 ) )  e.  ( n F ( g `
 n ) ) ) )
87rspccva 3308 . . . . 5  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  /\  n  e.  NN )  ->  ( g `  (
n  +  1 ) )  e.  ( n F ( g `  n ) ) )
91, 8sylan 488 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( g `
 ( n  + 
1 ) )  e.  ( n F ( g `  n ) ) )
10 bcthlem.9 . . . . . 6  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
1110ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( g `
 n )  e.  ( X  X.  RR+ ) )
12 bcth.2 . . . . . . 7  |-  J  =  ( MetOpen `  D )
13 bcthlem.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( CMet `  X ) )
14 bcthlem.5 . . . . . . 7  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
1512, 13, 14bcthlem1 23121 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  ( g `
 n )  e.  ( X  X.  RR+ ) ) )  -> 
( ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) )  <-> 
( ( g `  ( n  +  1
) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) )
1615expr 643 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  n )  e.  ( X  X.  RR+ )  ->  ( (
g `  ( n  +  1 ) )  e.  ( n F ( g `  n
) )  <->  ( (
g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) ) )
1711, 16mpd 15 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  ( n  +  1 ) )  e.  ( n F ( g `  n
) )  <->  ( (
g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) )
189, 17mpbid 222 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) )
19 cmetmet 23084 . . . . . . . . . . . . 13  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2013, 19syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( Met `  X ) )
21 metxmet 22139 . . . . . . . . . . . 12  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2312mopntop 22245 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
2422, 23syl 17 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
2524adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  J  e.  Top )
26 xp1st 7198 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( g `  (
n  +  1 ) ) )  e.  X
)
27 xp2nd 7199 . . . . . . . . . . . . 13  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR+ )
2827rpxrd 11873 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR* )
2926, 28jca 554 . . . . . . . . . . 11  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( 1st `  ( g `  ( n  +  1
) ) )  e.  X  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR* ) )
30 blssm 22223 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  (
g `  ( n  +  1 ) ) )  e.  X  /\  ( 2nd `  ( g `
 ( n  + 
1 ) ) )  e.  RR* )  ->  (
( 1st `  (
g `  ( n  +  1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
31303expb 1266 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( 1st `  ( g `  (
n  +  1 ) ) )  e.  X  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  e.  RR* )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
3222, 29, 31syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
33 1st2nd2 7205 . . . . . . . . . . . . 13  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( g `  ( n  +  1 ) )  =  <. ( 1st `  ( g `
 ( n  + 
1 ) ) ) ,  ( 2nd `  (
g `  ( n  +  1 ) ) ) >. )
3433fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
n  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( n  + 
1 ) ) )
>. ) )
35 df-ov 6653 . . . . . . . . . . . 12  |-  ( ( 1st `  ( g `
 ( n  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
n  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( n  + 
1 ) ) )
>. )
3634, 35syl6reqr 2675 . . . . . . . . . . 11  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) )
3736adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) )
3812mopnuni 22246 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
3922, 38syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  =  U. J
)
4039adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  X  =  U. J )
4132, 37, 403sstr3d 3647 . . . . . . . . 9  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  U. J
)
42 eqid 2622 . . . . . . . . . 10  |-  U. J  =  U. J
4342sscls 20860 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  U. J )  ->  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) ) )
4425, 41, 43syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) ) )
45 difss2 3739 . . . . . . . 8  |-  ( ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
46 sstr2 3610 . . . . . . . 8  |-  ( ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  -> 
( ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) )
4744, 45, 46syl2im 40 . . . . . . 7  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) )
4847a1d 25 . . . . . 6  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 2nd `  ( g `  ( n  +  1
) ) )  < 
( 1  /  n
)  ->  ( (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) ) )
4948ex 450 . . . . 5  |-  ( ph  ->  ( ( g `  ( n  +  1
) )  e.  ( X  X.  RR+ )  ->  ( ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  -> 
( ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) ) ) )
50493impd 1281 . . . 4  |-  ( ph  ->  ( ( ( g `
 ( n  + 
1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) )  ->  ( ( ball `  D ) `  (
g `  ( n  +  1 ) ) )  C_  ( ( ball `  D ) `  ( g `  n
) ) ) )
5150adantr 481 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( g `  (
n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  ( n  +  1
) ) )  < 
( 1  /  n
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) ) 
C_  ( ( (
ball `  D ) `  ( g `  n
) )  \  ( M `  n )
) )  ->  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( ball `  D ) `  ( g `  n
) ) ) )
5218, 51mpd 15 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( ball `  D ) `  ( g `  n
) ) )
5352ralrimiva 2966 1  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   <.cop 4183   U.cuni 4436   class class class wbr 4653   {copab 4712    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    / cdiv 10684   NNcn 11020   RR+crp 11832   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   Topctop 20698   Clsdccld 20820   clsccl 20822   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-cmet 23055
This theorem is referenced by:  bcthlem3  23123  bcthlem4  23124
  Copyright terms: Public domain W3C validator