MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem3 Structured version   Visualization version   Unicode version

Theorem bcthlem3 23123
Description: Lemma for bcth 23126. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem.7  |-  ( ph  ->  R  e.  RR+ )
bcthlem.8  |-  ( ph  ->  C  e.  X )
bcthlem.9  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
bcthlem.10  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
bcthlem.11  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
Assertion
Ref Expression
bcthlem3  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  A  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  A
) ) )
Distinct variable groups:    k, r, x, z, A    C, r, x    g, k, r, x, z, D    g, F, k, r, x, z    g, J, k, r, x, z   
g, M, k, r, x, z    ph, k,
r, x, z    x, R    g, X, k, r, x, z
Allowed substitution hints:    ph( g)    A( g)    C( z, g, k)    R( z, g, k, r)

Proof of Theorem bcthlem3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 bcthlem.11 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
2 oveq1 6657 . . . . . . . . . 10  |-  ( k  =  A  ->  (
k  +  1 )  =  ( A  + 
1 ) )
32fveq2d 6195 . . . . . . . . 9  |-  ( k  =  A  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( A  +  1
) ) )
4 id 22 . . . . . . . . . 10  |-  ( k  =  A  ->  k  =  A )
5 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  A  ->  (
g `  k )  =  ( g `  A ) )
64, 5oveq12d 6668 . . . . . . . . 9  |-  ( k  =  A  ->  (
k F ( g `
 k ) )  =  ( A F ( g `  A
) ) )
73, 6eleq12d 2695 . . . . . . . 8  |-  ( k  =  A  ->  (
( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  <->  ( g `  ( A  +  1 ) )  e.  ( A F ( g `
 A ) ) ) )
87rspccva 3308 . . . . . . 7  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  /\  A  e.  NN )  ->  ( g `  ( A  +  1 ) )  e.  ( A F ( g `  A ) ) )
91, 8sylan 488 . . . . . 6  |-  ( (
ph  /\  A  e.  NN )  ->  ( g `
 ( A  + 
1 ) )  e.  ( A F ( g `  A ) ) )
10 bcthlem.9 . . . . . . . 8  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
1110ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  A  e.  NN )  ->  ( g `
 A )  e.  ( X  X.  RR+ ) )
12 bcth.2 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
13 bcthlem.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
14 bcthlem.5 . . . . . . . . 9  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
1512, 13, 14bcthlem1 23121 . . . . . . . 8  |-  ( (
ph  /\  ( A  e.  NN  /\  ( g `
 A )  e.  ( X  X.  RR+ ) ) )  -> 
( ( g `  ( A  +  1
) )  e.  ( A F ( g `
 A ) )  <-> 
( ( g `  ( A  +  1
) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( A  +  1 ) ) )  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  ( A  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  A )
)  \  ( M `  A ) ) ) ) )
1615expr 643 . . . . . . 7  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( g `  A )  e.  ( X  X.  RR+ )  ->  ( (
g `  ( A  +  1 ) )  e.  ( A F ( g `  A
) )  <->  ( (
g `  ( A  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  ( A  +  1 ) ) )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  ( A  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  A )
)  \  ( M `  A ) ) ) ) ) )
1711, 16mpd 15 . . . . . 6  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( g `  ( A  +  1 ) )  e.  ( A F ( g `  A
) )  <->  ( (
g `  ( A  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  ( A  +  1 ) ) )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  ( A  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  A )
)  \  ( M `  A ) ) ) ) )
189, 17mpbid 222 . . . . 5  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( g `  ( A  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  ( A  +  1 ) ) )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  ( A  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  A )
)  \  ( M `  A ) ) ) )
1918simp3d 1075 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( cls `  J ) `
 ( ( ball `  D ) `  (
g `  ( A  +  1 ) ) ) )  C_  (
( ( ball `  D
) `  ( g `  A ) )  \ 
( M `  A
) ) )
2019difss2d 3740 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( cls `  J ) `
 ( ( ball `  D ) `  (
g `  ( A  +  1 ) ) ) )  C_  (
( ball `  D ) `  ( g `  A
) ) )
21203adant2 1080 . 2  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  A  e.  NN )  ->  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  ( A  +  1 ) ) ) )  C_  ( ( ball `  D
) `  ( g `  A ) ) )
22 peano2nn 11032 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
23 cmetmet 23084 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
24 metxmet 22139 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2513, 23, 243syl 18 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
26 bcthlem.6 . . . . 5  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
27 bcthlem.7 . . . . 5  |-  ( ph  ->  R  e.  RR+ )
28 bcthlem.8 . . . . 5  |-  ( ph  ->  C  e.  X )
29 bcthlem.10 . . . . 5  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
3012, 13, 14, 26, 27, 28, 10, 29, 1bcthlem2 23122 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
3125, 10, 30, 12caublcls 23107 . . 3  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  ( A  +  1
)  e.  NN )  ->  x  e.  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  ( A  +  1 ) ) ) ) )
3222, 31syl3an3 1361 . 2  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  A  e.  NN )  ->  x  e.  ( ( cls `  J ) `
 ( ( ball `  D ) `  (
g `  ( A  +  1 ) ) ) ) )
3321, 32sseldd 3604 1  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  A  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   1c1 9937    + caddc 9939    < clt 10074    / cdiv 10684   NNcn 11020   RR+crp 11832   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   Clsdccld 20820   clsccl 20822   ~~> tclm 21030   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-cmet 23055
This theorem is referenced by:  bcthlem4  23124
  Copyright terms: Public domain W3C validator