Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneval Structured version   Visualization version   Unicode version

Theorem fneval 32347
Description: Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1  |-  .~  =  ( Fne  i^i  `' Fne )
Assertion
Ref Expression
fneval  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .~  B  <->  (
topGen `  A )  =  ( topGen `  B )
) )

Proof of Theorem fneval
StepHypRef Expression
1 fneval.1 . . . 4  |-  .~  =  ( Fne  i^i  `' Fne )
21breqi 4659 . . 3  |-  ( A  .~  B  <->  A ( Fne  i^i  `' Fne ) B )
3 brin 4704 . . . 4  |-  ( A ( Fne  i^i  `' Fne ) B  <->  ( A Fne B  /\  A `' Fne B ) )
4 fnerel 32333 . . . . . 6  |-  Rel  Fne
54relbrcnv 5506 . . . . 5  |-  ( A `' Fne B  <->  B Fne A )
65anbi2i 730 . . . 4  |-  ( ( A Fne B  /\  A `' Fne B )  <->  ( A Fne B  /\  B Fne A ) )
73, 6bitri 264 . . 3  |-  ( A ( Fne  i^i  `' Fne ) B  <->  ( A Fne B  /\  B Fne A ) )
82, 7bitri 264 . 2  |-  ( A  .~  B  <->  ( A Fne B  /\  B Fne A ) )
9 eqid 2622 . . . . . 6  |-  U. A  =  U. A
10 eqid 2622 . . . . . 6  |-  U. B  =  U. B
119, 10isfne4b 32336 . . . . 5  |-  ( B  e.  W  ->  ( A Fne B  <->  ( U. A  =  U. B  /\  ( topGen `  A )  C_  ( topGen `  B )
) ) )
1210, 9isfne4b 32336 . . . . . 6  |-  ( A  e.  V  ->  ( B Fne A  <->  ( U. B  =  U. A  /\  ( topGen `  B )  C_  ( topGen `  A )
) ) )
13 eqcom 2629 . . . . . . 7  |-  ( U. B  =  U. A  <->  U. A  = 
U. B )
1413anbi1i 731 . . . . . 6  |-  ( ( U. B  =  U. A  /\  ( topGen `  B
)  C_  ( topGen `  A ) )  <->  ( U. A  =  U. B  /\  ( topGen `  B )  C_  ( topGen `  A )
) )
1512, 14syl6bb 276 . . . . 5  |-  ( A  e.  V  ->  ( B Fne A  <->  ( U. A  =  U. B  /\  ( topGen `  B )  C_  ( topGen `  A )
) ) )
1611, 15bi2anan9r 918 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A Fne B  /\  B Fne A
)  <->  ( ( U. A  =  U. B  /\  ( topGen `  A )  C_  ( topGen `  B )
)  /\  ( U. A  =  U. B  /\  ( topGen `  B )  C_  ( topGen `  A )
) ) ) )
17 eqss 3618 . . . . . 6  |-  ( (
topGen `  A )  =  ( topGen `  B )  <->  ( ( topGen `  A )  C_  ( topGen `  B )  /\  ( topGen `  B )  C_  ( topGen `  A )
) )
1817anbi2i 730 . . . . 5  |-  ( ( U. A  =  U. B  /\  ( topGen `  A
)  =  ( topGen `  B ) )  <->  ( U. A  =  U. B  /\  ( ( topGen `  A
)  C_  ( topGen `  B )  /\  ( topGen `
 B )  C_  ( topGen `  A )
) ) )
19 anandi 871 . . . . 5  |-  ( ( U. A  =  U. B  /\  ( ( topGen `  A )  C_  ( topGen `
 B )  /\  ( topGen `  B )  C_  ( topGen `  A )
) )  <->  ( ( U. A  =  U. B  /\  ( topGen `  A
)  C_  ( topGen `  B ) )  /\  ( U. A  =  U. B  /\  ( topGen `  B
)  C_  ( topGen `  A ) ) ) )
2018, 19bitri 264 . . . 4  |-  ( ( U. A  =  U. B  /\  ( topGen `  A
)  =  ( topGen `  B ) )  <->  ( ( U. A  =  U. B  /\  ( topGen `  A
)  C_  ( topGen `  B ) )  /\  ( U. A  =  U. B  /\  ( topGen `  B
)  C_  ( topGen `  A ) ) ) )
2116, 20syl6bbr 278 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A Fne B  /\  B Fne A
)  <->  ( U. A  =  U. B  /\  ( topGen `
 A )  =  ( topGen `  B )
) ) )
22 unieq 4444 . . . . 5  |-  ( (
topGen `  A )  =  ( topGen `  B )  ->  U. ( topGen `  A
)  =  U. ( topGen `
 B ) )
23 unitg 20771 . . . . . 6  |-  ( A  e.  V  ->  U. ( topGen `
 A )  = 
U. A )
24 unitg 20771 . . . . . 6  |-  ( B  e.  W  ->  U. ( topGen `
 B )  = 
U. B )
2523, 24eqeqan12d 2638 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( U. ( topGen `  A )  =  U. ( topGen `  B )  <->  U. A  =  U. B
) )
2622, 25syl5ib 234 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( topGen `  A
)  =  ( topGen `  B )  ->  U. A  =  U. B ) )
2726pm4.71rd 667 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( topGen `  A
)  =  ( topGen `  B )  <->  ( U. A  =  U. B  /\  ( topGen `  A )  =  ( topGen `  B
) ) ) )
2821, 27bitr4d 271 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A Fne B  /\  B Fne A
)  <->  ( topGen `  A
)  =  ( topGen `  B ) ) )
298, 28syl5bb 272 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .~  B  <->  (
topGen `  A )  =  ( topGen `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   ` cfv 5888   topGenctg 16098   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by:  fneer  32348  topfneec  32350  topfneec2  32351
  Copyright terms: Public domain W3C validator