| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneval | Structured version Visualization version Unicode version | ||
| Description: Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fneval.1 |
|
| Ref | Expression |
|---|---|
| fneval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneval.1 |
. . . 4
| |
| 2 | 1 | breqi 4659 |
. . 3
|
| 3 | brin 4704 |
. . . 4
| |
| 4 | fnerel 32333 |
. . . . . 6
| |
| 5 | 4 | relbrcnv 5506 |
. . . . 5
|
| 6 | 5 | anbi2i 730 |
. . . 4
|
| 7 | 3, 6 | bitri 264 |
. . 3
|
| 8 | 2, 7 | bitri 264 |
. 2
|
| 9 | eqid 2622 |
. . . . . 6
| |
| 10 | eqid 2622 |
. . . . . 6
| |
| 11 | 9, 10 | isfne4b 32336 |
. . . . 5
|
| 12 | 10, 9 | isfne4b 32336 |
. . . . . 6
|
| 13 | eqcom 2629 |
. . . . . . 7
| |
| 14 | 13 | anbi1i 731 |
. . . . . 6
|
| 15 | 12, 14 | syl6bb 276 |
. . . . 5
|
| 16 | 11, 15 | bi2anan9r 918 |
. . . 4
|
| 17 | eqss 3618 |
. . . . . 6
| |
| 18 | 17 | anbi2i 730 |
. . . . 5
|
| 19 | anandi 871 |
. . . . 5
| |
| 20 | 18, 19 | bitri 264 |
. . . 4
|
| 21 | 16, 20 | syl6bbr 278 |
. . 3
|
| 22 | unieq 4444 |
. . . . 5
| |
| 23 | unitg 20771 |
. . . . . 6
| |
| 24 | unitg 20771 |
. . . . . 6
| |
| 25 | 23, 24 | eqeqan12d 2638 |
. . . . 5
|
| 26 | 22, 25 | syl5ib 234 |
. . . 4
|
| 27 | 26 | pm4.71rd 667 |
. . 3
|
| 28 | 21, 27 | bitr4d 271 |
. 2
|
| 29 | 8, 28 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-fne 32332 |
| This theorem is referenced by: fneer 32348 topfneec 32350 topfneec2 32351 |
| Copyright terms: Public domain | W3C validator |