| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcval | Structured version Visualization version Unicode version | ||
| Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| pcval.1 |
|
| pcval.2 |
|
| Ref | Expression |
|---|---|
| pcval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . 6
| |
| 2 | 1 | eqeq1d 2624 |
. . . . 5
|
| 3 | eqeq1 2626 |
. . . . . . . 8
| |
| 4 | oveq1 6657 |
. . . . . . . . . . . . . 14
| |
| 5 | 4 | breq1d 4663 |
. . . . . . . . . . . . 13
|
| 6 | 5 | rabbidv 3189 |
. . . . . . . . . . . 12
|
| 7 | 6 | supeq1d 8352 |
. . . . . . . . . . 11
|
| 8 | pcval.1 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 10 | 4 | breq1d 4663 |
. . . . . . . . . . . . 13
|
| 11 | 10 | rabbidv 3189 |
. . . . . . . . . . . 12
|
| 12 | 11 | supeq1d 8352 |
. . . . . . . . . . 11
|
| 13 | pcval.2 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 15 | 9, 14 | oveq12d 6668 |
. . . . . . . . 9
|
| 16 | 15 | eqeq2d 2632 |
. . . . . . . 8
|
| 17 | 3, 16 | bi2anan9r 918 |
. . . . . . 7
|
| 18 | 17 | 2rexbidv 3057 |
. . . . . 6
|
| 19 | 18 | iotabidv 5872 |
. . . . 5
|
| 20 | 2, 19 | ifbieq2d 4111 |
. . . 4
|
| 21 | df-pc 15542 |
. . . 4
| |
| 22 | pnfex 10093 |
. . . . 5
| |
| 23 | iotaex 5868 |
. . . . 5
| |
| 24 | 22, 23 | ifex 4156 |
. . . 4
|
| 25 | 20, 21, 24 | ovmpt2a 6791 |
. . 3
|
| 26 | ifnefalse 4098 |
. . 3
| |
| 27 | 25, 26 | sylan9eq 2676 |
. 2
|
| 28 | 27 | anasss 679 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sup 8348 df-pnf 10076 df-xr 10078 df-pc 15542 |
| This theorem is referenced by: pczpre 15552 pcdiv 15557 |
| Copyright terms: Public domain | W3C validator |