MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeq Structured version   Visualization version   Unicode version

Theorem uspgr2wlkeq 26542
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( A  =  B  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) ) ) )
Distinct variable groups:    y, A    y, B    y, G    y, N

Proof of Theorem uspgr2wlkeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3anan32 1050 . . 3  |-  ( ( N  =  ( # `  ( 1st `  B
) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) )  <->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
21a1i 11 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
)  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  <-> 
( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) ) )
3 wlkeq 26529 . . . 4  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  (
# `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
433expa 1265 . . 3  |-  ( ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  ->  ( A  =  B  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
)  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) ) ) )
543adant1 1079 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( A  =  B  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
)  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) ) ) )
6 fzofzp1 12565 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  ( x  +  1 )  e.  ( 0 ... N
) )
76adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  ->  ( x  + 
1 )  e.  ( 0 ... N ) )
8 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( x  + 
1 )  ->  (
( 2nd `  A
) `  y )  =  ( ( 2nd `  A ) `  (
x  +  1 ) ) )
9 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( x  + 
1 )  ->  (
( 2nd `  B
) `  y )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
108, 9eqeq12d 2637 . . . . . . . . . . . 12  |-  ( y  =  ( x  + 
1 )  ->  (
( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1110adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G ) )  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  /\  y  =  ( x  +  1 ) )  ->  (
( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
127, 11rspcdv 3312 . . . . . . . . . 10  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  ->  ( A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  -> 
( ( 2nd `  A
) `  ( x  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) ) )
1312impancom 456 . . . . . . . . 9  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  ( x  e.  ( 0..^ N )  ->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1413ralrimiv 2965 . . . . . . . 8  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. x  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( x  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
15 oveq1 6657 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  +  1 )  =  ( x  + 
1 ) )
1615fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  A ) `  (
x  +  1 ) ) )
1715fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( 2nd `  B
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
1816, 17eqeq12d 2637 . . . . . . . . 9  |-  ( y  =  x  ->  (
( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1918cbvralv 3171 . . . . . . . 8  |-  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) )  <->  A. x  e.  (
0..^ N ) ( ( 2nd `  A
) `  ( x  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
2014, 19sylibr 224 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) )
21 fzossfz 12488 . . . . . . . . . 10  |-  ( 0..^ N )  C_  (
0 ... N )
22 ssralv 3666 . . . . . . . . . 10  |-  ( ( 0..^ N )  C_  ( 0 ... N
)  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) )
2321, 22mp1i 13 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  ->  A. y  e.  (
0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) )
24 r19.26 3064 . . . . . . . . . . 11  |-  ( A. y  e.  ( 0..^ N ) ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  <->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) ) )
25 preq12 4270 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  ->  { (
( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )
2625a1i 11 . . . . . . . . . . . 12  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  ->  { (
( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )
2726ralimdv 2963 . . . . . . . . . . 11  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  /\  ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
2824, 27syl5bir 233 . . . . . . . . . 10  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 y )  =  ( ( 2nd `  B
) `  y )  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
2928expd 452 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) ) )
3023, 29syld 47 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  -> 
( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) ) )
3130imp 445 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
3220, 31mpd 15 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )
3332ex 450 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  ->  A. y  e.  (
0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )
34 uspgrupgr 26071 . . . . . . . 8  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
35 eqid 2622 . . . . . . . . . 10  |-  (Vtx `  G )  =  (Vtx
`  G )
36 eqid 2622 . . . . . . . . . 10  |-  (iEdg `  G )  =  (iEdg `  G )
37 eqid 2622 . . . . . . . . . 10  |-  ( 1st `  A )  =  ( 1st `  A )
38 eqid 2622 . . . . . . . . . 10  |-  ( 2nd `  A )  =  ( 2nd `  A )
3935, 36, 37, 38upgrwlkcompim 26539 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  A  e.  (Walks `  G )
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) )
4039ex 450 . . . . . . . 8  |-  ( G  e. UPGraph  ->  ( A  e.  (Walks `  G )  ->  ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) ) )
4134, 40syl 17 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( A  e.  (Walks `  G )  ->  ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) ) )
42 eqid 2622 . . . . . . . . . 10  |-  ( 1st `  B )  =  ( 1st `  B )
43 eqid 2622 . . . . . . . . . 10  |-  ( 2nd `  B )  =  ( 2nd `  B )
4435, 36, 42, 43upgrwlkcompim 26539 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  B  e.  (Walks `  G )
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B
) ) ) ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )
4544ex 450 . . . . . . . 8  |-  ( G  e. UPGraph  ->  ( B  e.  (Walks `  G )  ->  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) ) )
4634, 45syl 17 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( B  e.  (Walks `  G )  ->  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) ) )
47 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  ( 1st `  B ) )  =  N  ->  ( 0..^ ( # `  ( 1st `  B ) ) )  =  ( 0..^ N ) )
4847eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( # `  ( 1st `  B ) )  ->  ( 0..^ (
# `  ( 1st `  B ) ) )  =  ( 0..^ N ) )
4948raleqdv 3144 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  ( 1st `  B ) )  ->  ( A. y  e.  ( 0..^ ( # `  ( 1st `  B
) ) ) ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  <->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) )
50 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  ( 1st `  A ) )  =  N  ->  ( 0..^ ( # `  ( 1st `  A ) ) )  =  ( 0..^ N ) )
5150eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( 0..^ (
# `  ( 1st `  A ) ) )  =  ( 0..^ N ) )
5251raleqdv 3144 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( A. y  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  <->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } ) )
5349, 52bi2anan9r 918 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( ( A. y  e.  (
0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  <->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) ) )
54 r19.26 3064 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  ( 0..^ N ) ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  <->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) )
55 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  <-> 
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) )
56 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  =  ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  ->  ( (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  <->  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
5756eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  <-> 
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
5857biimpd 219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  ->  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
5955, 58syl6bi 243 . . . . . . . . . . . . . . . . . . . 20  |-  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) ) )
6059com13 88 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) ) )
6160imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  /\  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( { ( ( 2nd `  A ) `
 y ) ,  ( ( 2nd `  A
) `  ( y  +  1 ) ) }  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
6261ral2imi 2947 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  ( 0..^ N ) ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
6354, 62sylbir 225 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
6453, 63syl6bi 243 . . . . . . . . . . . . . . 15  |-  ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( ( A. y  e.  (
0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
6564com12 32 . . . . . . . . . . . . . 14  |-  ( ( A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
6665ex 450 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  ( A. y  e.  (
0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  ->  (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
67663ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  ->  (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
6867com12 32 . . . . . . . . . . 11  |-  ( A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  ->  (
( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )  -> 
( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
69683ad2ant3 1084 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B
) ) ) ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )  -> 
( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
7069imp 445 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  /\  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
7170expd 452 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  /\  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( N  =  ( # `  ( 1st `  A ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
7271a1i 11 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  /\  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( N  =  ( # `  ( 1st `  A ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) ) )
7341, 46, 72syl2and 500 . . . . . 6  |-  ( G  e. USPGraph  ->  ( ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  ->  ( N  =  ( # `  ( 1st `  A ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) ) )
74733imp1 1280 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
75 eqcom 2629 . . . . . . 7  |-  ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  <->  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
) )
7636uspgrf1oedg 26068 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )
)
77 f1of1 6136 . . . . . . . . . . . 12  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )
7876, 77syl 17 . . . . . . . . . . 11  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> (Edg `  G ) )
79 eqidd 2623 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  (iEdg `  G
)  =  (iEdg `  G ) )
80 eqidd 2623 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  dom  (iEdg `  G
)  =  dom  (iEdg `  G ) )
81 edgval 25941 . . . . . . . . . . . . . 14  |-  (Edg `  G )  =  ran  (iEdg `  G )
8281eqcomi 2631 . . . . . . . . . . . . 13  |-  ran  (iEdg `  G )  =  (Edg
`  G )
8382a1i 11 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  ran  (iEdg `  G
)  =  (Edg `  G ) )
8479, 80, 83f1eq123d 6131 . . . . . . . . . . 11  |-  ( G  e. USPGraph  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G )  <->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> (Edg `  G ) ) )
8578, 84mpbird 247 . . . . . . . . . 10  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G ) )
86853ad2ant1 1082 . . . . . . . . 9  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G ) )
8786adantr 481 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G ) )
8835, 36, 37, 38wlkelwrd 26528 . . . . . . . . . . . . . . 15  |-  ( A  e.  (Walks `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) ) )
8935, 36, 42, 43wlkelwrd 26528 . . . . . . . . . . . . . . 15  |-  ( B  e.  (Walks `  G
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )
90 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( 0..^ N )  =  ( 0..^ ( # `  ( 1st `  A ) ) ) )
9190eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( y  e.  ( 0..^ N )  <-> 
y  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ) )
92 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  y  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) )  ->  ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G ) )
9392expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0..^ (
# `  ( 1st `  A ) ) )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) )
9491, 93syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) ) )
9594adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) ) )
9695imp 445 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  ->  ( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) )
9796com12 32 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A ) `  y )  e.  dom  (iEdg `  G ) ) )
9897adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A ) `  y )  e.  dom  (iEdg `  G ) ) )
99 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  =  ( # `  ( 1st `  B ) )  ->  ( 0..^ N )  =  ( 0..^ ( # `  ( 1st `  B ) ) ) )
10099eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  =  ( # `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  <-> 
y  e.  ( 0..^ ( # `  ( 1st `  B ) ) ) ) )
101 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  y  e.  ( 0..^ ( # `  ( 1st `  B
) ) ) )  ->  ( ( 1st `  B ) `  y
)  e.  dom  (iEdg `  G ) )
102101expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0..^ (
# `  ( 1st `  B ) ) )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) )
103100, 102syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  =  ( # `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
104103adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
105104imp 445 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  ->  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) )
106105com12 32 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) )
107106adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) )
10898, 107jcad 555 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) )
109108ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  ->  ( ( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
110109adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
111110com12 32 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) )
112111adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  ->  ( ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( ( ( N  =  ( # `  ( 1st `  A
) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) )
113112imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( ( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
11488, 89, 113syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( N  =  (
# `  ( 1st `  A ) )  /\  N  =  ( # `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) )
115114expd 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( ( N  =  ( # `  ( 1st `  A ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
116115expd 452 . . . . . . . . . . . 12  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( N  =  ( # `  ( 1st `  A ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) ) )
117116imp 445 . . . . . . . . . . 11  |-  ( ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
1181173adant1 1079 . . . . . . . . . 10  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
119118imp 445 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
120119imp 445 . . . . . . . 8  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) )
121 f1veqaeq 6514 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ran  (iEdg `  G
)  /\  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) )  ->  ( (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
12287, 120, 121syl2an2r 876 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
12375, 122syl5bi 232 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( # `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
124123ralimdva 2962 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  ->  A. y  e.  (
0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
12533, 74, 1243syld 60 . . . 4  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  /\  N  =  (
# `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y )  ->  A. y  e.  (
0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
126125expimpd 629 . . 3  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
127126pm4.71d 666 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  <-> 
( ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) ) )
1282, 5, 1273bitr4d 300 1  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  (
# `  ( 1st `  A ) ) )  ->  ( A  =  B  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {cpr 4179   dom cdm 5114   ran crn 5115   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495
This theorem is referenced by:  uspgr2wlkeq2  26543  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator