MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   Unicode version

Theorem f1omvdco3 17869
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( X  e.  dom  ( F 
\  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 309 . . . . 5  |-  ( ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G  \  _I  ) )  <->  ( -.  X  e.  dom  ( F 
\  _I  )  <->  -.  X  e.  dom  ( G  \  _I  ) ) )
2 disjsn 4246 . . . . . . 7  |-  ( ( dom  ( F  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( F 
\  _I  ) )
3 disj2 4024 . . . . . . 7  |-  ( ( dom  ( F  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( F  \  _I  )  C_  ( _V  \  { X } ) )
42, 3bitr3i 266 . . . . . 6  |-  ( -.  X  e.  dom  ( F  \  _I  )  <->  dom  ( F 
\  _I  )  C_  ( _V  \  { X } ) )
5 disjsn 4246 . . . . . . 7  |-  ( ( dom  ( G  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( G 
\  _I  ) )
6 disj2 4024 . . . . . . 7  |-  ( ( dom  ( G  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) )
75, 6bitr3i 266 . . . . . 6  |-  ( -.  X  e.  dom  ( G  \  _I  )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) )
84, 7bibi12i 329 . . . . 5  |-  ( ( -.  X  e.  dom  ( F  \  _I  )  <->  -.  X  e.  dom  ( G  \  _I  ) )  <-> 
( dom  ( F  \  _I  )  C_  ( _V  \  { X }
)  <->  dom  ( G  \  _I  )  C_  ( _V 
\  { X }
) ) )
91, 8bitri 264 . . . 4  |-  ( ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G  \  _I  ) )  <->  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
109notbii 310 . . 3  |-  ( -.  ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G 
\  _I  ) )  <->  -.  ( dom  ( F 
\  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
11 df-xor 1465 . . 3  |-  ( ( X  e.  dom  ( F  \  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) )  <->  -.  ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G 
\  _I  ) ) )
12 df-xor 1465 . . 3  |-  ( ( dom  ( F  \  _I  )  C_  ( _V 
\  { X }
)  \/_  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) )  <->  -.  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
1310, 11, 123bitr4i 292 . 2  |-  ( ( X  e.  dom  ( F  \  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) )  <-> 
( dom  ( F  \  _I  )  C_  ( _V  \  { X }
)  \/_  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
14 f1omvdco2 17868 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  \/_  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) ) )  ->  -.  dom  (
( F  o.  G
)  \  _I  )  C_  ( _V  \  { X } ) )
15 disj2 4024 . . . . 5  |-  ( ( dom  ( ( F  o.  G )  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( ( F  o.  G )  \  _I  )  C_  ( _V  \  { X } ) )
16 disjsn 4246 . . . . 5  |-  ( ( dom  ( ( F  o.  G )  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( ( F  o.  G ) 
\  _I  ) )
1715, 16bitr3i 266 . . . 4  |-  ( dom  ( ( F  o.  G )  \  _I  )  C_  ( _V  \  { X } )  <->  -.  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
1817con2bii 347 . . 3  |-  ( X  e.  dom  ( ( F  o.  G ) 
\  _I  )  <->  -.  dom  (
( F  o.  G
)  \  _I  )  C_  ( _V  \  { X } ) )
1914, 18sylibr 224 . 2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  \/_  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
2013, 19syl3an3b 1364 1  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( X  e.  dom  ( F 
\  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    \/_ wxo 1464    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    _I cid 5023   dom cdm 5114    o. ccom 5118   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  psgnunilem5  17914
  Copyright terms: Public domain W3C validator