MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kerf1hrm Structured version   Visualization version   Unicode version

Theorem kerf1hrm 18743
Description: A ring homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
kerf1hrm.a  |-  A  =  ( Base `  R
)
kerf1hrm.b  |-  B  =  ( Base `  S
)
kerf1hrm.n  |-  N  =  ( 0g `  R
)
kerf1hrm.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1hrm  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1hrm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 6102 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 482 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 6337 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 17 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 501 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 475 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  x  e.  A )
86simprd 479 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F `  x )  e.  {  .0.  } )
9 fvex 6201 . . . . . . . . 9  |-  ( F `
 x )  e. 
_V
109elsn 4192 . . . . . . . 8  |-  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  )
118, 10sylib 208 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  ( F `  x )  =  .0.  )
12 kerf1hrm.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 kerf1hrm.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 kerf1hrm.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
15 kerf1hrm.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
1612, 13, 14, 15f1rhm0to0 18740 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 219 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1265 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  ->  ( ( F `  x )  =  .0. 
->  x  =  N
) )
1918imp 445 . . . . . . 7  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B
)  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1325 . . . . . 6  |-  ( ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  }
) )  ->  x  =  N )
2120ex 450 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 velsn 4193 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22syl6ibr 242 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3609 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 rhmrcl1 18719 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
26 ringgrp 18552 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2712, 15grpidcl 17450 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2825, 26, 273syl 18 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  N  e.  A )
29 rhmghm 18725 . . . . . . . 8  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
3015, 14ghmid 17666 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
3129, 30syl 17 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  N )  =  .0.  )
32 fvex 6201 . . . . . . . 8  |-  ( F `
 N )  e. 
_V
3332elsn 4192 . . . . . . 7  |-  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  )
3431, 33sylibr 224 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  N )  e.  {  .0.  } )
3512, 13rhmf 18726 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F : A
--> B )
36 ffn 6045 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
37 elpreima 6337 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3835, 36, 373syl 18 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3928, 34, 38mpbir2and 957 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  N  e.  ( `' F " {  .0.  } ) )
4039snssd 4340 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  { N }  C_  ( `' F " {  .0.  } ) )
4140adantr 481 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4224, 41eqssd 3620 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4335adantr 481 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
4429adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
45 simpr2l 1120 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
46 simpr2r 1121 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
47 simpr3 1069 . . . . . . . . . 10  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
48 eqid 2622 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
49 eqid 2622 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
5012, 14, 48, 49ghmeqker 17687 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
5150biimpa 501 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5244, 45, 46, 47, 51syl31anc 1329 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
53 simpr1 1067 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5452, 53eleqtrd 2703 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
55 ovex 6678 . . . . . . . . 9  |-  ( x ( -g `  R
) y )  e. 
_V
5655elsn 4192 . . . . . . . 8  |-  ( ( x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N )
5754, 56sylib 208 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
5825adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Ring )
5958, 26syl 17 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6012, 15, 49grpsubeq0 17501 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6159, 45, 46, 60syl3anc 1326 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6257, 61mpbid 222 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
63623anassrs 1290 . . . . 5  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6463ex 450 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6564ralrimivva 2971 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
66 dff13 6512 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6743, 65, 66sylanbrc 698 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6842, 67impbida 877 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   -gcsg 17424    GrpHom cghm 17657   Ringcrg 18547   RingHom crh 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715
This theorem is referenced by:  zrhf1ker  30019
  Copyright terms: Public domain W3C validator