Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsingle Structured version   Visualization version   Unicode version

Theorem brsingle 32024
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsingle.1  |-  A  e. 
_V
brsingle.2  |-  B  e. 
_V
Assertion
Ref Expression
brsingle  |-  ( ASingleton B 
<->  B  =  { A } )

Proof of Theorem brsingle
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brsingle.1 . 2  |-  A  e. 
_V
2 brsingle.2 . 2  |-  B  e. 
_V
3 df-singleton 31969 . 2  |- Singleton  =  ( ( _V  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  (  _I  (x)  _V ) ) )
4 brxp 5147 . . 3  |-  ( A ( _V  X.  _V ) B  <->  ( A  e. 
_V  /\  B  e.  _V ) )
51, 2, 4mpbir2an 955 . 2  |-  A ( _V  X.  _V ) B
6 velsn 4193 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
71ideq 5274 . . 3  |-  ( x  _I  A  <->  x  =  A )
86, 7bitr4i 267 . 2  |-  ( x  e.  { A }  <->  x  _I  A )
91, 2, 3, 5, 8brtxpsd3 32003 1  |-  ( ASingleton B 
<->  B  =  { A } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   class class class wbr 4653    _I cid 5023    X. cxp 5112  Singletoncsingle 31945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969
This theorem is referenced by:  elsingles  32025  fnsingle  32026  fvsingle  32027  brapply  32045  brsuccf  32048  funpartlem  32049
  Copyright terms: Public domain W3C validator