Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsuccf Structured version   Visualization version   Unicode version

Theorem brsuccf 32048
Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsuccf.1  |-  A  e. 
_V
brsuccf.2  |-  B  e. 
_V
Assertion
Ref Expression
brsuccf  |-  ( ASucc B  <->  B  =  suc  A )

Proof of Theorem brsuccf
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-succf 31979 . . 3  |- Succ  =  (Cup 
o.  (  _I  (x) Singleton ) )
21breqi 4659 . 2  |-  ( ASucc B  <->  A (Cup  o.  (  _I  (x) Singleton ) ) B )
3 brsuccf.1 . . 3  |-  A  e. 
_V
4 brsuccf.2 . . 3  |-  B  e. 
_V
53, 4brco 5292 . 2  |-  ( A (Cup  o.  (  _I 
(x) Singleton ) ) B  <->  E. x
( A (  _I 
(x) Singleton ) x  /\  xCup B ) )
6 opex 4932 . . . . 5  |-  <. A ,  { A } >.  e.  _V
7 breq1 4656 . . . . 5  |-  ( x  =  <. A ,  { A } >.  ->  ( xCup B  <->  <. A ,  { A } >.Cup B ) )
86, 7ceqsexv 3242 . . . 4  |-  ( E. x ( x  = 
<. A ,  { A } >.  /\  xCup B
)  <->  <. A ,  { A } >.Cup B )
9 snex 4908 . . . . 5  |-  { A }  e.  _V
103, 9, 4brcup 32046 . . . 4  |-  ( <. A ,  { A } >.Cup B  <->  B  =  ( A  u.  { A } ) )
118, 10bitri 264 . . 3  |-  ( E. x ( x  = 
<. A ,  { A } >.  /\  xCup B
)  <->  B  =  ( A  u.  { A } ) )
123brtxp2 31988 . . . . . 6  |-  ( A (  _I  (x) Singleton ) x  <->  E. a E. b ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
) )
1312anbi1i 731 . . . . 5  |-  ( ( A (  _I  (x) Singleton ) x  /\  xCup B
)  <->  ( E. a E. b ( x  = 
<. a ,  b >.  /\  A  _I  a  /\  ASingleton b )  /\  xCup B ) )
14 3anass 1042 . . . . . . . . 9  |-  ( ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  <->  ( x  = 
<. a ,  b >.  /\  ( A  _I  a  /\  ASingleton b ) ) )
1514anbi1i 731 . . . . . . . 8  |-  ( ( ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  /\  xCup B
)  <->  ( ( x  =  <. a ,  b
>.  /\  ( A  _I  a  /\  ASingleton b ) )  /\  xCup B ) )
16 an32 839 . . . . . . . 8  |-  ( ( ( x  =  <. a ,  b >.  /\  ( A  _I  a  /\  ASingleton b ) )  /\  xCup B )  <->  ( (
x  =  <. a ,  b >.  /\  xCup B )  /\  ( A  _I  a  /\  ASingleton b ) ) )
17 vex 3203 . . . . . . . . . . . . 13  |-  a  e. 
_V
1817ideq 5274 . . . . . . . . . . . 12  |-  ( A  _I  a  <->  A  =  a )
19 eqcom 2629 . . . . . . . . . . . 12  |-  ( A  =  a  <->  a  =  A )
2018, 19bitri 264 . . . . . . . . . . 11  |-  ( A  _I  a  <->  a  =  A )
21 vex 3203 . . . . . . . . . . . 12  |-  b  e. 
_V
223, 21brsingle 32024 . . . . . . . . . . 11  |-  ( ASingleton
b  <->  b  =  { A } )
2320, 22anbi12i 733 . . . . . . . . . 10  |-  ( ( A  _I  a  /\  ASingleton b )  <->  ( a  =  A  /\  b  =  { A } ) )
2423anbi1i 731 . . . . . . . . 9  |-  ( ( ( A  _I  a  /\  ASingleton b )  /\  ( x  =  <. a ,  b >.  /\  xCup B ) )  <->  ( (
a  =  A  /\  b  =  { A } )  /\  (
x  =  <. a ,  b >.  /\  xCup B ) ) )
25 ancom 466 . . . . . . . . 9  |-  ( ( ( x  =  <. a ,  b >.  /\  xCup B )  /\  ( A  _I  a  /\  ASingleton b ) )  <->  ( ( A  _I  a  /\  ASingleton b )  /\  (
x  =  <. a ,  b >.  /\  xCup B ) ) )
26 df-3an 1039 . . . . . . . . 9  |-  ( ( a  =  A  /\  b  =  { A }  /\  ( x  = 
<. a ,  b >.  /\  xCup B ) )  <-> 
( ( a  =  A  /\  b  =  { A } )  /\  ( x  = 
<. a ,  b >.  /\  xCup B ) ) )
2724, 25, 263bitr4i 292 . . . . . . . 8  |-  ( ( ( x  =  <. a ,  b >.  /\  xCup B )  /\  ( A  _I  a  /\  ASingleton b ) )  <->  ( a  =  A  /\  b  =  { A }  /\  ( x  =  <. a ,  b >.  /\  xCup B ) ) )
2815, 16, 273bitri 286 . . . . . . 7  |-  ( ( ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  /\  xCup B
)  <->  ( a  =  A  /\  b  =  { A }  /\  ( x  =  <. a ,  b >.  /\  xCup B ) ) )
29282exbii 1775 . . . . . 6  |-  ( E. a E. b ( ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  /\  xCup B
)  <->  E. a E. b
( a  =  A  /\  b  =  { A }  /\  (
x  =  <. a ,  b >.  /\  xCup B ) ) )
30 19.41vv 1915 . . . . . 6  |-  ( E. a E. b ( ( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  /\  xCup B
)  <->  ( E. a E. b ( x  = 
<. a ,  b >.  /\  A  _I  a  /\  ASingleton b )  /\  xCup B ) )
31 opeq1 4402 . . . . . . . . 9  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
3231eqeq2d 2632 . . . . . . . 8  |-  ( a  =  A  ->  (
x  =  <. a ,  b >.  <->  x  =  <. A ,  b >.
) )
3332anbi1d 741 . . . . . . 7  |-  ( a  =  A  ->  (
( x  =  <. a ,  b >.  /\  xCup B )  <->  ( x  =  <. A ,  b
>.  /\  xCup B ) ) )
34 opeq2 4403 . . . . . . . . 9  |-  ( b  =  { A }  -> 
<. A ,  b >.  =  <. A ,  { A } >. )
3534eqeq2d 2632 . . . . . . . 8  |-  ( b  =  { A }  ->  ( x  =  <. A ,  b >.  <->  x  =  <. A ,  { A } >. ) )
3635anbi1d 741 . . . . . . 7  |-  ( b  =  { A }  ->  ( ( x  = 
<. A ,  b >.  /\  xCup B )  <->  ( x  =  <. A ,  { A } >.  /\  xCup B ) ) )
373, 9, 33, 36ceqsex2v 3245 . . . . . 6  |-  ( E. a E. b ( a  =  A  /\  b  =  { A }  /\  ( x  = 
<. a ,  b >.  /\  xCup B ) )  <-> 
( x  =  <. A ,  { A } >.  /\  xCup B ) )
3829, 30, 373bitr3i 290 . . . . 5  |-  ( ( E. a E. b
( x  =  <. a ,  b >.  /\  A  _I  a  /\  ASingleton b
)  /\  xCup B
)  <->  ( x  = 
<. A ,  { A } >.  /\  xCup B
) )
3913, 38bitri 264 . . . 4  |-  ( ( A (  _I  (x) Singleton ) x  /\  xCup B
)  <->  ( x  = 
<. A ,  { A } >.  /\  xCup B
) )
4039exbii 1774 . . 3  |-  ( E. x ( A (  _I  (x) Singleton ) x  /\  xCup B )  <->  E. x
( x  =  <. A ,  { A } >.  /\  xCup B ) )
41 df-suc 5729 . . . 4  |-  suc  A  =  ( A  u.  { A } )
4241eqeq2i 2634 . . 3  |-  ( B  =  suc  A  <->  B  =  ( A  u.  { A } ) )
4311, 40, 423bitr4i 292 . 2  |-  ( E. x ( A (  _I  (x) Singleton ) x  /\  xCup B )  <->  B  =  suc  A )
442, 5, 433bitri 286 1  |-  ( ASucc B  <->  B  =  suc  A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    u. cun 3572   {csn 4177   <.cop 4183   class class class wbr 4653    _I cid 5023    o. ccom 5118   suc csuc 5725    (x) ctxp 31937  Singletoncsingle 31945  Cupccup 31953  Succcsuccf 31955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-cup 31976  df-succf 31979
This theorem is referenced by:  dfrdg4  32058
  Copyright terms: Public domain W3C validator